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Abstract

Evidence suggests that people evaluate outcomes relative to expecta-

tions. I analyze this expectations-based loss aversion à la Kőszegi and

Rabin in the context of dynamic and static auctions, where the reference

point is given by the (endogenous) equilibrium outcome. If agents update

their reference point during the auction, the arrival of information cru-

cially affects equilibrium behavior. Consequently, I show that—even with

independent private values—the Vickrey auction yields strictly higher rev-

enue than the (ascending clock) English auction, violating the well-known

revenue equivalence.
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1 Introduction

Auctions are a universal tool to organize sales in markets. At the core of auction

theory stand the well-known revenue equivalence results. Vickrey (1961) notes

the strategic equivalence between the dynamic English and the static Vickrey

auction: if values are private, there is no effect of sequential information and,

independent of risk attitudes, it is a weakly dominant strategy to bid (up to)

one’s private valuation in both formats.1 These powerful theoretical predictions,

however, stand in contrast to the experimental literature, which mostly finds

lower revenues for the English auction.2 I identify endogenous preferences in

the form of expectations-based loss aversion as a possible explanation for this

phenomenon.

In my model, I study the effect of dynamic information on bidding behavior

when bidders are expectations-based loss averse: bidders evaluate the auction

outcome relative to their reference point, formed by rational expectations. A

strong belief in winning increases the emotional attachment to the object, and

hence the willingness to pay. This is the well-established attachment effect.3 I

model the English auction as ascending-clock button (i.e., “Japanese”) auction.

The price ascends in increments. Bidders eventually drop out until only one

bidder remains and the auction ends. At each increment a bidder updates her

beliefs based on whether the auction has ended.4 As this arrival of new informa-

tion changes expectations during the auction, the strategic equivalence between

the English auction and the Vickrey auction breaks down. In the English auction

the belief in winning eventually declines for each losing bidder as the clock price

approaches her bidding limit. Consequently, any time-consistent bidding plan

for such a bidder features lower bids in the English auction than in the Vickrey

auction, where bids are chosen optimally with respect to ex-ante beliefs. Since

prices in both auctions are determined by the second-highest—losing—bidder,

this discouragement effect leads to lower prices in the English auction.

1Myerson (1981) extends the results to show that all main auction formats give rise to the
same expected revenue.

2See, e.g., Kagel and Levin (1993), Harstad (2000), and Li (2017).
3Banerji and Gupta (2014) and Rosato and Tymula (2019) provide experimental evidence

that expectations indeed affect bidding in auction-like environments in the predicted way. Del-
gado et al. (2008) show that in auction environments the blood oxygen level in the brain
responds more strongly to losses than gains and correlates to overbidding.

4In Section 4.4 and Appendix 6.3 I discuss an extension where dropouts of individual oppo-
nents are observable.
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The model of reference-dependent preferences follows Kőszegi and Rabin (2006,

2009). Each bidder has a reference point formed by rational expectations over

final transfers. Whenever new information arises, a bidder updates her reference

point. At any update the bidder instantaneously experiences psychological utility

of gains and losses from changes in the winning probability and the expectation

on how much to pay. I assume that bidders bracket narrowly, meaning that

they assign gains and losses separately to the money dimension and the goods

dimension.

In the Vickrey auction, where there is no information update during the auc-

tion, bidders compare the outcome to ex-ante beliefs. If they win, they feel a gain

in the goods dimension and a loss in the money dimension, both proportional to

how unexpected it was for them to win. Conversely, if they lose, they feel a gain

in money and a loss in good, proportional to their expectation of winning. The

idea that losses are weighted more strongly than gains gives rise to an attachment

effect : the stronger a bidder believes in winning the less willing she is to give up

the good and experience a loss. Hence, similar to Lange and Ratan (2010), high

types with high expectations of winning bid more than their intrinsic valuation.

Low types, who feel more attached to keeping their money, underbid.

In the English auction, a bidder learns at each increment whether she might

win the auction. This information permanently updates her expectations, and

gives rise to reference-dependent utility in each increment.5 Each bidder forms a

time-consistent bidding plan, taking into account the effects of information revela-

tion on expected reference-dependent utility. In my model, I take the continuous-

time limit by letting the increment size go to zero, and identify two main effects

of dynamic information revelation.

First, any bidder necessarily experiences a discouragement effect during the

auction: as long as the auction is ongoing a bidder’s chance to win declines

gradually.6 As the price approaches a bidder’s bidding limit, her belief in winning

approaches zero. Bidders feel no attachment effect for the object any more, since

they eventually perceive themselves as a low type with respect to the remaining

5Kőszegi and Rabin interpret an agent’s reference point as her lagged beliefs. As discussed in
the literature section, recent experimental findings, however, suggest that the reference point
adjusts quickly to new information. For this paper, I consider the natural and important
benchmark of instantaneous updating. Whether instantaneous reference-point updating is a
realistic approximation may depend on the exact auction environment, e.g., the speed at which
the price augments.

6This effect is reminiscent of the discouragement effect in sequential auctions with reference-
depend preferences in Rosato (2020).
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bidders. As bidders anticipate this discouragement effect when forming their

bidding plan, any time-consistent plan features lower bids in the English auction

than in the Vickrey auction, where bids are optimal with respect to ex-ante

beliefs.

Second, since losses are weighted more strongly than gains, expected gain-loss

utility is always negative. Consequently, bidders dislike fluctuations in beliefs.

They would prefer not to observe the auction process and would rather use proxies

to bid on their behalf. This logic is related to Benartzi et al. (1995) and Pagel

(2016), who explain the equity premium puzzle using loss aversion: since stock

prices fluctuate, an investor who regularly checks her portfolio will experience

negative expected gain-loss utility. This disutility makes stocks less attractive

relative to bonds.

Since bidders are forward-looking, they account for these costs when they

choose their equilibrium bidding strategy among the set of time-consistent plans.

Intuitively, bidders would like to tend to the extremes in their bids, as such behav-

ior exhibits an insurance effect on total belief fluctuations. Similar as in Mermer

(2021), the ex-ante optimal plan would amount to underbidding for low types

and excessive overbidding for high types. However, while low bids for low types

are time consistent, high types anticipate that, due to the discouragement effect,

any plan featuring high bids is time inconsistent. Consequently, in equilibrium

all types bid lower in the English auction than in the Vickrey auction. While

bids of low types in the English auction are determined by the insurance effect,

bids of high types are bound by the discouragement effect.

As reviewed in the literature section, the theoretical predictions of my model

are in line with most of the experimental literature. It is worth emphasizing,

however, that all results in this paper rely on the assumption that bidders practice

mental accounting (Kahneman and Tversky (1984), Thaler (1985, 1999)) with

respect to gains and losses in money and goods. For most laboratory experiments

the auctioned object is a money voucher. In that case mental accounting would

imply that bidders regard the two sources of money as non-fungible, and fail to

take compound lotteries.7 In practice, there is various evidence of such behavior.8

7This point was first raised by Lange and Ratan (2010) who argue that if bidders bracket
widely in induced value auctions, then inference from lab experiments does not carry over to
commodity auctions in the field.

8For instance, in Rabin and Weizsäcker (2009) subjects fail to take compound lotteries over
money, whereas Milkman and Beshears (2009) and Abeler and Marklein (2017) provide evidence
that subjects regard different sources of money as non-fungible.
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Schindler (2003) provides the only laboratory-controlled experiment that I am

aware of, which tests the revenue equivalence for commodities.9 She reports 14

percent lower revenues in English auctions, therefore confirming the findings of

the induced-value literature as well as my theoretical predictions.

The contribution of my paper is twofold. First, it provides a novel rationale

to explain the observed revenue gap between the two auction formats. Second,

it contributes to the small body of literature on strategic interaction between

loss-averse agents in a dynamic framework.

The remainder of the paper is structured as follows: Section 2 discusses the

related literature, Section 3 introduces the model. Section 4 analyzes and com-

pares equilibrium behavior in both auction formats, while Section 5 concludes.

All proofs and various extensions are relegated to the appendix.

2 Related Literature

Kagel et al. (1987) first report a failure in the strategic equivalence between

the Vickrey and English auction, and in particular significant overbidding in the

Vickrey auction for affiliated values. Kagel and Levin (1993) and Harstad (2000)

replicate these results for independent private values. More recent replications

are found in Li (2017) and in Breitmoser and Schweighofer-Kodritsch (2019) for

observable and non-observable dropouts.

As the violation of the strategic equivalence between the English and Vickrey

auction cannot be explained with standard risk preference it is often labeled as

a cognitive mistake (see Kagel et al. (1987), Harrison (1989), and Li (2017)).

Overbidding in the Vickrey auction has also been attributed to non-standard

preferences such as “spite” (Morgan et al. (2003)) or “joy of winning” (Cox et al.

(1983)).10 However, these preferences cannot explain a violation of the strategic

equivalence between the two formats. There is a small body of literature that

suggests other non-standard preferences as the source of the violation. Chew

(1989) shows that the strategic equivalence breaks down if the bidders’ values are

9The only field experiment I am aware of was conducted by Lucking-Reiley (1999), who
trades collectable cards on an internet auction platform. He finds no significant difference in
revenues, though he admits himself that he cannot entirely control for a potential selection bias
and endogenous entry.

10Notably, for private values bounded rationality in the sense of “cursed equilibrium” (Eyster
and Rabin (2005)) cannot explain overbidding in the Vickrey auction. K-level reasoning (Craw-
ford and Iriberri (2007)) can only explain it when the type distribution does not follow the
uniform distribution used in most experiments.
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uncertain and they are implicit weighted utility maximizers. Relatedly, Karni

and Safra (1989) show that equivalence holds if and only if bidders are expected

utility maximizers. In a recent contribution, Auster and Kellner (2020) show

that the equivalence between Dutch and First-Price auction fails for the case of

ambiguity-averse bidders.

Kőszegi and Rabin (2006) suggest recent rational expectations as a reference

point. The hypothesis that expectations play a role in an individual’s prefer-

ences have been supported in experiments (Ericson and Fuster (2011) and Abeler

et al. (2011)), as well as challenged (Heffetz and List (2014)).11 In the context of

auctions, Banerji and Gupta (2014) and Rosato and Tymula (2019) provide evi-

dence that expectations-based loss aversion affects bidding behavior. Banerji and

Gupta (2014) manipulate rational expectations by changing the support of the

opponents’ draw in a BDM auction. Rosato and Tymula (2019) vary the number

of bidders in a Vickrey auction between treatments. Both experiments find that

bids significantly increase in the induced expectations to win, as predicted by the

model of Kőszegi and Rabin (2006).

The idea that the reference point is determined by recent beliefs leads to the

natural question of the speed of reference-point adjustment. Strahilevitz and

Loewenstein (1998) provide early evidence that the time span for which individ-

uals hold beliefs has an impact on the reference point. Gill and Prowse (2012)

use a real-effort task to measure loss aversion and find that in their framework

“the adjustment process is essentially instantaneous.” Smith (2019) induces dif-

ferent probabilities of winning an item across groups of individuals. After the

uncertainty is resolved, he measures the willingness to pay for the item among

bidders who have not won. In contrast to Ericson and Fuster (2011), who elicit

valuations before the uncertainty resolves, Smith finds no significant difference

between different groups. This suggests that the reference point is not so much

determined by lagged beliefs, but rather adjusts quickly to the new information.12

For static environments Kőszegi and Rabin (2006) has arguably become the

standard model of reference-dependent preferences. It has been successfully ap-

plied to various fields, like mechanism design (Eisenhuth (2019)), contract theory

(see Kőszegi (2014) for a review, and Herweg et al. (2010) in particular), indus-

trial organization (for instance Heidhues and Kőszegi (2008, 2014), Herweg and

Mierendorff (2013), Karle and Peitz (2014), Rosato (2016)), and labor markets

11For a literature review on related evidence, see Ericson and Fuster (2014).
12Smith’s confidence intervals are, however, rather wide.
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(Eliaz and Spiegler (2014)).

There is a small, but growing, body of literature concerning strategic in-

teraction between multiple loss-averse players. Dato et al. (2017) extend the

equilibrium concepts of Kőszegi and Rabin (2006) to strategic interaction. Mer-

mer (2021) analyzes contests with loss-averse agents. Similar to my results in

the Vickrey auction, she finds that the willingness to invest is increasing in the

winning probability.

In the context of static auctions Lange and Ratan (2010) were the first to

point out that the attachment effect affects bidding behavior. They show that the

bidding behavior depends on whether bidders bracket widely or narrowly. For the

Vickrey auction they find similar results to mine for a slightly different equilibrium

concept.13 Eisenhuth and Grunewald (2020) show that an all-pay auction yields

higher payoffs than a first-price auction for narrow-bracketing bidders, since loss-

averse bidders dislike payment uncertainty. Balzer and Rosato (2021) derive

equilibria in an environment with interdependent values and independent signals.

For dynamic environments, Kőszegi and Rabin (2009) propose a model of

dynamic loss aversion, where updates of expectations carry reference-dependent

utility. This model has so far only been applied sparsely. Ehrhart and Ott (2014)

introduce a model of the Dutch and English auction. They use a simplified version

of Kőszegi and Rabin (2009) in the sense that sequential information updates the

reference point, but—in contrast to Kőszegi and Rabin (2009)—does not induce

gain-loss utility. As a result, in equilibrium there is never any feeling of loss in the

English auction, since by the time a bidder drops out she expects to lose. Rosato

(2020) uses a two-period dynamic model to show that revenues are decreasing

in sequential auctions with loss-averse bidders, due to a similar discouragement

effect, as I identify in the English auction. Macera (2018) shows for a two-period

moral hazard model with loss-averse agents that for the optimal contract wages

are fixed and incentives are deferred to the future. To my best knowledge, Pagel is

the first to rigorously apply Kőszegi and Rabin (2009) to dynamic problems with

a longer time horizon. Pagel (2016) shows that dynamic reference-dependent

preferences can explain the historical levels of equity premiums and premium

volatility in asset prices. Related to the logic in the English auction, loss-averse

agents dislike price fluctuations, which makes assets relatively unattractive. Pagel

(2017) shows that dynamic reference-dependent preferences can explain empirical

13For more details on the equilibrium concept see Appendix 6.1.
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observations about saving schemes for life-cycle consumption.

3 The Model

3.1 Auction Rules

There are n ≥ 2 loss-averse bidders participating in an auction for a non-divisible

good. Bidder i’s intrinsic valuation θi is privately observed and independently

drawn from a common distribution G with a strictly positive, differentiable den-

sity g on positive support [θmin, θmax].

For the Vickrey (second-price) auction, every bidder submits a sealed bid after

learning her private valuation. Then the auction is resolved: the bidder with the

highest bid receives the object and has to pay the amount of the second-highest

bid.

For the English auction, I am considering an Ascending Clock (“Japanese”)

Auction. A clock starts at a price of zero and is raised incrementally. Bidders

observe the ascending clock and signal to the auctioneer when they wish to drop

out. Once a bidder drops out she cannot bid again. Once there is only one active

bidder left the auction ends and the remaining bidder has to pay the price at

which the last of her opponents dropped out.

3.2 Strategies and Preferences

Definition 1. A bidding plan b specifies an available action for every point in

time and every possible history of information revelation. A bidding strategy

b(θ) assigns to each possible type θ a bidding plan.

Hence, as bidders cannot observe individual opponent dropouts, a bidding

plan in both the English and Vickrey auction is described by a (maximum) bid

b ∈ R+. Note that for standard preferences any profile of bidding plans induces

the same utilities in both auction formats.

The model of dynamic reference-dependent utility follows Kőszegi and Rabin

(2009). The bidders’ reference point is determined by rational beliefs about final

payoffs in both dimensions. For the reference point formation, I take the interim

approach: first, each bidder learns her valuation θ and forms a bidding plan b(θ).

Then, rational beliefs H0 about the opponents’ bidding plans define the bidder’s

initial reference point. Then, the auction takes place.
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Any change in beliefs during the auction updates the reference point and

instantaneously induces a psychological utility of gains or losses (henceforth gain-

loss utility). Let F k
t ≡ F k

t (b, θ,Ht) be a bidder’s beliefs over final payoffs in

k ∈ {money, good} at time t. Denote the gain-loss utility of an update from F k
t−1

to F k
t with N(F k

t |F k
t−1).

For the evaluation of an update N(F k
t |F k

t−1) bidders assign gains and losses

to changes in the respective quantiles of the distribution function. Intuitively,

they rank possible outcomes from worst to best and then evaluate changes to the

worst, the second worst ,..., until the best outcome. I define the quantile function

cFkt (p) with quantile p ∈ [0, 1] as usual as the left-continuous inverse of F k
t . Then

N(F k
t |F k

t−1) =

∫ 1

0

µk(cFkt (p)− cFkt−1
(p))dp,

where the function µk measures feelings of gain and loss for respective belief

changes. As a key feature, loss-averse bidders weight losses with respect to their

reference distribution stronger than gains. Following Section IV in Kőszegi and

Rabin (2006) and most of the literature, I assume µk to be piecewise linear,

µk(y) =

ηky y ≥ 0,

λkηky y < 0,

where ηk > 0, λk > 1. Moreover, I assume Λk := λkηk − ηk < 1 for k ∈ {m, g}.14

As it allows for a significantly simpler exposition, I first focus on the case in

which bidders are loss averse in the goods dimension only, i.e., ηm = 0.15 In

Section 4.4 and Appendix 6.2 I show that similar effects on equilibrium bidding

can be derived from loss aversion in the money dimension as well. Hence, the

main results strengthen for loss aversion in both dimensions.

14The condition Λ < 1 is referred to as “no dominance of gain-loss utility” by Herweg et al.
(2010). Whereas a large Λ is innocuous in the Vickrey auction, Λ > 1+η in the English auction
would lead to a nonexistence of symmetric equilibria, as the lowest types would never choose
to participate, cf. the discussion in 6.3.

15Horowitz and McConnell (2002) conclude in their summary that the endowment effect
is “lowest for experiments involving forms of money.” Kőszegi and Rabin (2009) rationalize
this fact with the idea that a loss in money is foregone future consumption, whose reference-
dependent utility may be discounted. In this sense it may be plausible that loss aversion mainly
applies to the goods dimension.
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Utility in the Vickrey auction

In the static Vickrey auction there is no reference point updating until the auction

is resolved. Hence, the timing is as follows: First, the bidder learns her type θ

and forms a plan to bid b∗, which—together with rational beliefs on opponents’

behavior—defines her reference point. Then, she submits a bid b. Finally, the

auction is resolved, transfers are made, and the bidder enjoys reference-dependent

utility by comparing the outcome to her reference point. To keep notational

similarity with the English auction, denote for a given maximal opponent bid

x with F k
T (b, θ,HT ) the distribution of final payoffs from a bid b. Then, if the

bidder plans to bid b∗ but deviates to bid b instead, her utility is

u0(b, θ|b∗) =
∑

k∈{m,g}

N(F k
T (b, θ,HT )|F k

0 (b∗, θ,H0))

︸ ︷︷ ︸
gain-loss utility

+1b>x(θ − x)︸ ︷︷ ︸
classical utility

. (1)

Utility in the English auction

In the English auction, a bidder at each increment updates the reference point

with respect to new information or a deviation to another bidding plan.

� At each period t, before the clock increases, a bidder may deviate from plan

b∗ to another plan b. The associated belief change instantaneously induces

gain-loss utility N(F k
t (b, θ,Ht)|F k

t (b∗, θ,Ht)) in both dimensions.

� At each increment a bidder observes whether she won at the respective

price. The corresponding belief update instantaneously induces gain-loss

utility N(F k
t+1(b, θ,Ht+1)|F k

t (b, θ,Ht)) in both dimensions.

After the auction is terminated, transfers are made according to the auction

rules.16 The timing is summarized in Figure 1. The assumption that a bidder

immediately updates her reference point with respect to a deviation is a slight

departure from Kőszegi and Rabin (2009), who suggest that the agent should

update only at the end of the period, i.e. after the information in the period has

resolved. This modeling choice reflects the idea of instantaneous updating in the

English auction. Technically, it eliminates an asymmetry between information

16For mathematical convenience, I abstract from tie-breaking rules in the main model and
assume that the good is not sold, if the remaining bidders drop out simultaneously. With the
assumption of continuous density of types, as the increment size goes to zero, this becomes
equivalent to a tie-breaking rule by coin-flip.
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updates in the current and all future periods. This allows me to isolate the effect

of dynamic information and gives scope for the insurance effect. Importantly, the

revenue ranking between the two formats, which results from a discouragement

effect, does not rely on that assumption.

Figure 1: Timeline in the English auction

Suppose the English auction runs at most for T increments. If a bidder

deviates at time t from plan b∗ to plan b, then total utility ut(b, θ|b∗) from time

t onward is

ut(b, θ|b∗) = uc+
∑

k∈{m,g}

(
N
(
F kt (b, θ,Ht)|F kt (b∗, θ,Ht)

)
+

T∑
s=t+1

N
(
F ks (b, θ,Hs)|F ks−1(b, θ,Hs−1)

))
.

(2)

The first term uc ≡ 1b>x(θ − x) denotes classical utility for a maximal opponent

bid x, the second term is gain-loss utility from the deviation, and the third term

is total remaining gain-loss utility from news.17 Note that the distributions F k
T

are degenerate with both mass one on zero if b ≤ x, and with mass one on θ for

F g
T (respectively, mass one on −x for Fm

T ) if b > x.

Before I define the appropriate equilibrium concept and derive optimal bidding

strategies, the following example illustrates how gain-loss utility is formed during

the auction. It shows why loss-averse bidders prefer a Vickrey auction to an

English auction for given strategies.

Example 1. Consider a bidder, who is loss averse in the goods dimension, in an

English auction with one opponent. Suppose the bidder plans to bid up to b = 8

and expects an opponent drop-out price uniformly distributed on [0, 10]. Hence,

for any clock price t < 8 where the opponent is still active, the updated losing

17The upper bound of T in the sum is without loss of generality; if the auction terminates
early, all subsequent periods can be regarded as uninformative, and carry no further reference-
dependent utility.
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probability is 2
10−t , giving rise to a quantile function of

cF gt (p) =

0 p ≤ 2
10−t ,

θ p > 2
10−t .

Suppose the opponent drops out at a price of 6. Figure 2 shows an example

of the quantile functions before the auction begins (dotted), at a clock price of 4

(dashed), an arbitrary small increment before 6 (solid), and after the dropout at

6 (solid constant function at θ). As long as the price increases and the opponent

Figure 2: Updating in the English Auction

does not drop out, the losing probability increases. The discontinuity point in the

quantile function gradually shifts to the right, inducing a loss in each increment.

At a price of 4 the accumulated loss is λη times the medium gray shaded area.

Just before the opponent drops out at 6 the accumulated loss is λη times the

medium and light shaded area. When the opponent drops out at a price of 6, and

the quantile function jumps to the constant function cF g6 = θ, the update induces

a feeling of gain of η times the three combined shaded areas. Thus, the net gain-

loss utility in the goods dimension for the English auction is (0.2η+0.3(η−λη))θ =

(0.2η − 0.3Λ)θ.

In contrast, in a Vickrey auction with the same bidding strategies—and hence

same ex-ante beliefs—the only update takes place after the auction has been

resolved, and the belief jumps to the constant quantile function cF g6 . Thus, total

gain-loss utility is given by 0.2ηθ, proportional to the dark gray area only.

Intuitively, since losses are weighted stronger than gains, belief fluctuations

in the English auction generate a net loss of −0.3Λθ compared to the Vickrey

auction. If the bidder could use a bidding proxy that enabled her to ignore new

information during the English auction, she would forgo unpleasant variation in

beliefs, and receive the same utility as in a Vickrey auction. This logic is due to
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Kőszegi and Rabin (2009), who formally show in their Proposition 1 that, ceteris

paribus, any collapse of information signals weakly increases agents’ utility. The

result, that bidders in the English auction would prefer proxies to bid on their

behalf, is a testable prediction.

3.3 Equilibrium Concept

In the following I denote at any time t with

Ut(b, θ|b∗) ≡ EHtut(b, θ|b∗) (3)

expected utility for the remaining auction, and

Lt(b) ≡ Lt(b, θ|b) ≡ EHt

 ∑
k∈{m,g}

T∑
s=t+1

N(F k
s (b, θ,Hs)|F k

s−1(b, θ,Hs−1))

 (4)

the expected gain-loss utility at time t from all future information updates when

the bidding plan is b.

I apply the equilibrium concept of Kőszegi and Rabin (2009). For full details

and a psychological justification of the specific dynamic modeling choices, I refer

to their paper.

Definition 2. Define a credible plan in the following backward recursive way: A

bidding plan b∗ is credible at time t, if — given rational expectations derived

from the plan— at all times s ≥ t and for all possible information revelations

Us(b
∗, θ|b∗) ≥ Us(b, θ|b∗) (5)

holds with respect to all deviation plans b that are credible at time s. A personal

equilibrium (PE) is a plan that is credible at time zero. A PE is a preferred

personal equilibrium (PPE) if it maximizes utility at time zero among all PE.

Hence, a bidding plan is a personal equilibrium if, given the reference point

resulting from the plan, it maximizes expected utility at any point in time among

all credible deviations. In practice, the set of credible plans for a given belief

must be determined by thinking backwards. Crucially, the credibility assumption

implies that bidders do not have commitment power to their future selves in the

sense that they cannot plan profitable, but non-credible strategies. Committing
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to ex-post unfavorable actions could be profitable ex ante, because it would alter

beliefs and therefore change gain-loss utility received during the auction.

In the Vickrey auction the only decision is made at t = 0. Hence, applying

Kőszegi’s and Rabin’s definition of a PE to this setting simply calls for a bid b∗

such that

U0(b∗, θ|b∗) ≥ U0(b, θ|b∗)

for all b ∈ R+. This definition of a personal equilibrium for the special case of

a single individual decision under uncertainty exactly coincides with the definition

of an unacclimating personal equilibrium (UPE) in Kőszegi and Rabin (2007), as

I formally show in Appendix 6.1.

Kőszegi’s and Rabin’s notion of a UPE contrasts their concept of a choice-

acclimating personal equilibrium (CPE), which requires U0(b∗, θ|b∗) ≥ U0(b, θ|b).
for all b ∈ R+.

Both concepts are frequently used in the literature. I focus on the UPE

as a special case of the dynamic PE, in order to isolate the effect of dynamic

information revelation in my comparison between the Vickrey auction and the

English auction. In Appendix 6.1, I discuss the equilibrium concepts more broadly

and show that the revenue ranking does not rely on my choice of equilibrium

concept.

In general, the set of personal equilibria depends on the belief about other

players’ actions. To analyze the strategic interaction between multiple bidders, I

focus on symmetric personal equilibria.

Definition 3. A bidding strategy b(θ) is a (preferred) symmetric equilib-

rium if for each type θ and the belief that all opponents bid according to strategy

b(θ), the bidding plan b(θ) is a (preferred) personal equilibrium.

4 Analysis

4.1 The Vickrey Auction

Fixing a bidder of type θ, denote with H(b) the distribution over the maximal

opponent bid. Since the bidder receives a payoff of θ if and only if her bid exceeds

the highest opponent bid x, gain-loss utility associated with a bid b reads
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N(F g
T (b, θ)|F g

0 (b∗, θ,H)) =

H(b∗)µ(−θ) b ≤ x,(
1−H(b∗)

)
µ(θ) b > x.

The first line describes the feeling of loss if the agent loses the auction, and the

second line describes the feeling of gain if she wins. By Equation (3),

U0(b, θ|b∗) = EH

(
H(b∗)µ(−θ)1x≥b +

(
1−H(b∗)

)
µ(θ)1x<b + 1x<b(θ − x)

)
=
(
1−H(b)

)︸ ︷︷ ︸
Prob to lose

H(b∗)µ(−θ)︸ ︷︷ ︸
feeling of loss

+ H(b)︸︷︷︸
Prob to win

(
1−H(b∗)

)
µ(θ)︸ ︷︷ ︸

feeling of gain

+

∫ b

0

(θ − s)dH(s)︸ ︷︷ ︸
classical utility

.

Recall that b∗ is a personal equilibrium for belief H if it maximizes U0(b, θ|b∗)
for all b ∈ R+. In a symmetric equilibrium the belief H is determined by the

symmetric equilibrium bidding function, hence H(b(θ)) = Gn−1(θ).

Proposition 1. 1. For any continuous belief H(b) about the maximal oppo-

nent bid a bidder’s PE satisfies

b(θ) =
(

1 + η
(
1−H(b(θ))

)
+ ληH(b(θ))

)
θ.

2. Consider n bidders who are loss averse only in the goods dimension. The

unique symmetric increasing continuously differentiable PE in the Vickrey

auction is given by

b(θ) =
(

1 + η
(
1−Gn−1(θ)

)
+ ληGn−1(θ)

)
θ.

All types overbid with respect to their intrinsic valuation θ, but increasingly in

their type. The reason is the well-established attachment effect. As with standard

preferences, the optimal bid reflects the opportunity value of receiving the good.

With expectations-based loss aversion this opportunity value is belief-dependent.

As high types strongly believe in winning, losing would induce a feeling of loss,

which they try to prevent with an aggressive bid. The fact that a bidder is

indifferent between winning at a price of her bid and the loss perceived from losing

implies that a bidder may pay such a high price that the utility from winning

is negative.18 The finding that the attachment effect in UPE environments can

18Overbidding for all types stems from the fact that loss aversion is assigned only to goods,
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lead to purchase decisions which are unpreferable from an ex-ante perspective is

a central motif in various papers in the behavioral IO literature.19

4.2 The English Auction

In contrast to the Vickrey auction, in the English auction a bidder experiences

gain-loss utility in each period when she learns whether she is winning at the

current price. Since the information in each period is binary the following lemma

is central for calculating expected gains and losses.

Lemma 1. Suppose that a loss-averse agent’s payoff is distributed according to

F1 with probability ∆, and according to F2 with probability 1 − ∆. Let [a, b]

contain the support of F1 and F2. Denote with F = ∆F1 + (1−∆)F2 the ex-ante

distribution of payoffs. Then the ex-ante expected reference-dependent utility from

learning, whether the distribution is F1 or F2, is given by

E(N(Fi|F )) = −∆Λ

∫ b

a

|F (x)− F1(x)|dx.

Since losses loom larger than gains, the expected news utility is always nega-

tive. With this result I can derive a closed-form solution for the expected utility

when increments become small. From now the subscript t denotes the current

price rather than the increment, whereas F is the ex-ante distribution of the

maximal opponent bid.

Proposition 2. Suppose the distribution F has a density f . Suppose the bidder

plans to drop out at b, and the auction has not yet ended at price t < b. Then, for

increment size ε going to zero, in the limit the ex-ante expected marginal gain-loss

utility at price t is given by

`t(b, θ, F ) =
−f(t)

(1− F (t))2
(1− F (b))Λθ.

which makes the good relatively more important, compared to money. In Section 4.4 and
Appendix 6.2, I discuss loss aversion in both dimensions. I show that for equal-sized loss
aversion in both dimensions low types underbid and high types overbid. The intuition that
bidders may obtain negative utility from winning remains, however, unchanged. Depending on
the type distribution, even the expected utility can be negative.

19In this literature firms exploit this behavior, and strategically induce a high attachment
effect via random sales prices (Heidhues and Kőszegi (2014)), informational advertisement
(Karle and Schumacher (2017)), or limited supply of bargains (Rosato (2016)).
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Expected utility for the remainder of the auction at time t is in the limit given by

Ut(b, θ, F |b∗) =

∫ b
t
(θ − s)dF (s)

1− F (t)︸ ︷︷ ︸
classical utility

+
µ(F (b)− F (b∗))

1− F (t)
θ︸ ︷︷ ︸

one-time gain/loss

from deviating

+ Lt(b),︸ ︷︷ ︸
expected gain-loss utility

of remaining auction

(6)

where

Lt(b) ≡ Lt(b, θ, F |b) = ln

(
1− F (b)

1− F (t)

)
1− F (b)

1− F (t)
Λθ.

In the following, I refer to the limit result when the increment size goes to

zero as the continuous English auction.20

The deviation utility in Equation 6 is easily determined, as F (b)−F (b∗)
1−F (t)

is the

change in winning probability. More interestingly, note that the amount of

marginal disutility `t(b, θ, F ) is decreasing in b: an aggressive strategy induces less

belief fluctuation at each information update, and hence less marginal disutility

in the continuous English auction. Thus, an aggressive bid exerts an insurance

effect against high gain-loss disutility. There is, however, a countervailing effect

on total gain-loss disutility: the higher the bidder’s drop-out price, the longer she

may stay in the auction and be exposed to gain-loss disutility. Figure 3 shows

total expected gain-loss disutility at the beginning of the auction for different

bids. Losses are the strongest for intermediate bids. Bidding 0 or 1 induces no

uncertainty and therefore no gain-loss utility.

An optimal strategy must account for this incentive to insure against belief

fluctuations. I start by looking at ex-ante optimal bidding plans by ignoring the

restriction that plans must be credible.

Lemma 2. If n loss-averse bidders could commit ex ante to a (possibly non-

credible) bidding strategy in the continuous English auction, the lowest symmetric

increasing differentiable equilibrium would satisfy

b(θ) =
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ.

Figure 4 shows the ex-ante optimal strategy as a solid function. The insurance

20This notion does not intend to refer to the concept of continuous games by Simon and
Stinchcombe (1989). One should still regard the game as one with discrete increments on the
clock which are, however, arbitrarily small.
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Figure 3: Total Expected Loss for F ∼ U [0, 1]

effect leads to low bids for low types, while high types wish to strongly overbid.

Intuitively, bidders want to reduce expected gain-loss utility, and therefore try

to reduce uncertainty. Note, however, that since Lt(b, θ, F, b) is decreasing in t,

the incentive to insure against belief fluctuations declines as the auction unfolds,

creating a conflict of interest between an ex-ante self and a future self that has to

execute the bidding strategy. Next, I look at the constraints on bidding behavior

induced by the time-consistency assumptions that bids must be credible.

Lemma 3. Let the opponent’s drop-out price be distributed according to distri-

bution F with non-zero density f on some positive support [a, c]. Then, for the

continuous English auction any credible bidding strategy b ∈ (a, c) satisfies

b ≤ (1 + η)θ.

Lemma 3 illustrates the essential discouragement effect as the driving force

for low bidding in the English auction. The belief in winning eventually declines,

and by the time a bidder has to execute her maximum bid it is virtually zero,

leaving no place for any attachment effect. At that time the bidder perceives the

remaining auction similarly as to a Vickrey auction, where she has the lowest

possible type. Hence, at that point in time, her optimal bidding strategy resem-

bles that of the lowest type in the Vickrey auction, i.e., she bids no more than

b = (1 + η)θ.

Figure 4 illustrates the boundary of time-consistent strategies as a dashed
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line, showing that this constraint is binding for high types.

Figure 4: Gn−1(θ) ∼ U [0, 1], η = 0.3, λ = 4

I have so far only considered constraints on equilibrium behavior at time 0

and at time b. It turns out that these are the binding constraints:

Lemma 4. If a bidder’s belief F of the maximal opponent bid attains a non-zero

density f with some positive support [a, c], then a strategy b∗ ∈ (a, c) is a PE if

and only if

1. b∗ ≤ (1 + η)θ;

2. U0(b∗, θ, F |b∗) ≥ U0(b, θ, F |b∗) for any b ∈ [b∗, (1 + η)θ].

Hence, for low types, individual optimal behavior is determined by the in-

surance effect, whereas high types’ bids are bound by the discouragement effect.

Notably, Lemma 4 does not rely on the strategic interaction or loss aversion of

other bidders. Effectively, a continuous belief is sufficient for the discouragement

effect which binds optimal time-consistent bids below (1 + η)θ. For strategic

interaction I obtain:

Proposition 3. An increasing, almost everywhere differentiable function b(θ)

is a symmetric equilibrium in the continuous English auction with n loss-averse

bidders if and only if for all θ
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1. b(θ) ≤ (1 + η)θ;

2. b(θ) ≥ min
{

(1 + η)θ ;
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ
}

.

Thus, any increasing smooth function in the gray shaded area of Figure 5

constitutes a symmetric equilibrium.

Figure 5: Gn−1(θ) ∼ U [0, 1], η = 0.3, λ = 4

The thick line indicates the preferred symmetric equilibrium (PPE). Point

A, where the PPE hits the boundary of time-consistent strategies can be easily

determined: (
1 + η − Λ

(
1 + ln(1−Gn−1(θ))

))
θ = (1 + η)θ

if and only if G(θ) = (1− 1/e)
1

n−1 .

Corollary 1. The symmetric PPE in the continuous English auction with n

loss-averse bidders is given by

bPPE(θ) =


(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ G(θ) ≤ (1− 1/e)

1
n−1 ,

(1 + η)θ G(θ) > (1− 1/e)
1

n−1 .

Low types bid below their intrinsic value θ in the PPE if and only if λ > 2.

Note that the PPE is tangent to (1 +η−Λ)θ at the lowest type. Hence, there

is underbidding for low types if and only if η − Λ < 0, thus if and only if λ > 2.
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4.3 Revenue Comparison

Figure 6 summarizes the results on symmetric equilibrium bidding behavior as

established in Proposition 1 for the Vickrey auction and in Proposition 3 and

Corollary 1 for the English auction. The function bE(θ) indicates the PPE in

the English auction. The shaded area indicates the other potential symmetric

equilibria in the English auction, which are bounded by the line (1 + η)θ. Both

are below bV , the unique PE in the Vickrey auction, indicating strictly higher

revenues in the Vickrey auction.

Figure 6: Gn−1(θ) ∼ U [0, 1], η = 0.3, λ = 4

Note that bV (θ) at the lowest type is tangent to (1+η)θ—the upper bound of

equilibria in the English auction. The intuition is that for low types the decision

problem in both auction formats becomes increasingly similar: bidders in the

English auction only learn whether there are opponents with a lower valuation

than their own. Hence, for low types the information difference between the two

auction formats at the time the bidder places her (maximal) bid is small.

It is worth emphasizing that nothing about this intuition relies on the fact

that bidders hold correct beliefs or that all bidders share the same degree of loss

aversion. Indeed, as shown in Lemma 4, the discouragement effect binds bid-

ding in the English auction below (1 + η)θ for any continuous belief on opponent

dropouts. Conversely, in the Vickrey auction (1) of Proposition 1 shows that in

the Vickrey auction for any (potentially different) continuous belief a PE requires
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bidding weakly above (1 + η)θ, and strictly so if bidders expect a positive proba-

bility to win.21 Hence, Proposition 1, Lemma 4, and Proposition 3 immediately

imply the following Corollary on the revenue ranking.

Corollary 2. If a loss-averse bidder updates her reference point instantaneously

during the auction process, any continuous belief about opponents’ strategies lead

to higher personal equilibrium bids in the Vickrey auction than in the English

auction.

For symmetric equilibria only bids for the lowest type may coincide for both

auction formats. All other types bid strictly higher in the Vickrey auction, and

the Vickrey auction attains strictly higher revenue.

4.4 Robustness

In this section, I discuss various robustness checks with respect to the modeling

assumptions. The formal derivation of the results can be found in the respective

appendices.

Modeling Concept of Dynamic Reference-Dependent Utility

I have employed the news utility model of Kőszegi and Rabin (2009) to analyze

the impact of dynamic information in the English auction. The idea that any news

induces reference-dependent utility about prospective gains and losses gave scope

for the insurance effect: bidders take this expected news utility into account when

they form their bidding strategy. Notably, the revenue ranking is independent

of news utility, and only relies on the fact that the belief of winning decreases

with dynamic information during the English auction (discouragement effect).

In Appendix 6.1 I show formally that this effect remains unchanged in a model

without news utility, where bidders experience reference-dependent utility only

in the last period where the auction is resolved.

21The fact that high types in the English auction bid (1 + η)θ immediately implies that with
heterogeneity in η there can be no symmetric equilibrium that is monotone in type θ. Optimal
bidding remains, however, monotone in the opportunity value of winning. For a bidder with
sufficiently high θ this opportunity value is (1 + η)θ in the English auction. As shown in (1) of
Proposition 1, the same holds for the Vickrey auction, where the (belief-dependent) opportunity
value of winning

(
1 + η(1−H(b)) + ληH(b)

)
θ is increasing in λ and η.
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Loss Aversion in Money

In Appendix 6.2 I extend all results to a setting where bidders are also loss

averse with respect to money. While the technical derivations are much more

challenging, all intuitions and results on the comparison of the English auction

and Vickrey auction remain qualitatively exactly the same.

Moreover, a model of equal-sized loss aversion in both dimensions provides

a meaningful comparison to the risk-neutral benchmark. In the Vickrey auc-

tion, low types have a low belief in winning and perceive paying money as an

unexpected loss. Hence, they underbid with respect to their intrinsic valuation.

Conversely, high types, who expect to win with high probability, fear losing the

object and overbid with respect to their intrinsic valuation.

Again, due to the discouragement effect, any credible bidding plan in the

English auction is determined by the incentives of the bidder when she is on

the verge of dropping out. At that time such a bidder has virtually zero belief in

winning. Hence, winning at a price of b would create a feeling of loss of ληb in the

money domain, and a feeling of gain of ηθ in the object domain. Incorporating

classical utility, bidding up to b can only be time consistent if (1+λη)b ≤ (1+η)θ,

hence only if b ≤ 1+η
1+λη

. Again, this behavior mirrors that of the lowest type in

the Vickrey auction, who also has a belief of zero in winning.

Observable Opponent Dropouts

To mirror the Vickrey auction as closely as possible, I assumed that in the En-

glish auction bidders do not observe individual opponent dropouts, but only

whether there are any active bidders at a price. With this assumption both auc-

tion formats are strategically equivalent in the sense that they share the same

strategy space and payoff matrix for standard preferences. Hence, it allowed me

to isolate the effect of dynamic information from other strategic considerations.

In Appendix 6.3 I consider an extension where bidders can observe individual

dropouts. First, I show that in such a model equilibrium strategies necessarily

depend on the history of dropouts. Second, I show that with more than three

bidders symmetric and increasing equilibria fail to exist. Intuitively, with in-

stantaneous updating belief fluctuation creates such strong disutility that the

participation constraint of low bidders is violated. Third, I show that the dis-

couragement effect still holds in the following sense: whenever a bidder holds a

continuous belief about her opponents’ drop-out prices, her belief eventually ap-
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proaches zero. Hence, again any credible strategy involves only bids that satisfy

the same upper bound as in the baseline model.

5 Conclusion

I studied the effects of dynamic information on expectations-based preferences in

the dynamic English auction compared to the static Vickrey auction. If bidders

update their reference point instantaneously with respect to new information, dy-

namic information in the English influences the bidders’ endogenous preferences,

and thus their bidding strategies. The classical strategic equivalence between the

two auction formats breaks down and the English auction attains strictly lower

revenue than the Vickrey auction.

This finding highlights the importance of understanding the evolution of the

reference point in dynamic environments. In particular, research about the speed

of reference point adaptation with respect to new information is still in its infancy

and deserves further study.

The non-equivalence of the two auction formats stands in sharp contrast to the

revenue equivalence principles by Vickrey (1961) and Myerson (1981). Indeed,

the powerful approach of mechanism design and the revelation principle relies

on the assumption that agents’ valuations are exogenously given and do not

depend on the choice of mechanism. This assumption is violated if bidders have

endogenous preferences that depend on expectations induced by the mechanism

itself. In particular, if agents update their reference point with respect to new

information in a multi-stage mechanism, such a mechanism cannot be replaced

by a simple direct mechanism without changing agents’ incentives. The failure

of the revelation principle naturally leads to the question of optimal mechanism

design in dynamic environments with expectations-based loss-averse agents. The

study of optimal expectation management in these environments is an interesting

question for future research.

6 Appendix

6.1 Equilibrium Concepts

In this section I formally derive how the concept of a personal equilibrium (PE)

in Kőszegi and Rabin (2009) for the special case of a single decision under uncer-
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tainty coincides with the concept of an unacclimated personal equilibrium (UPE)

for static decision problems in Kőszegi and Rabin (2007). I then compare this

equilibrium concept with the dynamic extension of the CPE concept as devel-

oped in Rosato (2020). I show that the revenue ranking would remain under this

modeling choice.

Since utility is additively separable across different commodity dimensions,

it suffices to consider one dimension. For the framework of Kőszegi and Rabin

(2009) suppose that a person in period 0 chooses an action from some choice

set D. The action is characterized by its distribution G of payoffs in period 1.

The distribution G determines the reference point for the payoffs. Utility from a

realized payoff x in period 1 is then given by

u1(x) = x+

∫ 1

0

µ(x− cG(p))dp.

Choosing some action with payoff distribution F when the reference point is G

therefore induces expected utility of

U(F |G) =

∫ ∞
−∞

(
x+

∫ 1

0

µ(x− cG(p))dp

)
dF (x). (7)

By the definition in Kőszegi and Rabin (2009) an action with distribution G is

a personal equilibrium if it maximizes expected utility, given its induced beliefs,

i.e. if U(G|G) ≥ U(F |G) for all F ∈ D.

Similarly, by Equation (2) in Kőszegi and Rabin (2007) expected utility of a

payoff distribution F when the reference point is G is given by

U(F |G) =

∫ ∞
−∞

(
x+

∫ ∞
−∞

µ(x− s)dG(s)

)
dF (x), (8)

and G is a UPE if U(G|G) ≥ U(F |G) for all F ∈ D. It therefore remains to show

that ∫ 1

0

µ(x− cG(p))dp =

∫ ∞
−∞

µ(x− s)dG(s),

such that the definitions of U(F |G) in equation (7) and (8) coincide. For contin-

uously increasing distributions G this is an immediate consequence of integration

by substitution. For general distributions it follows from the fact that integration∫
· dG(x) is the pushforward measure of the Lebesgue measure under cG : (0, 1)→

R
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(c.f. Theorem 1.104 in Klenke (2013)), which concludes the proof.

The competing equilibrium concept to UPE for static decision problems is

CPE (Kőszegi and Rabin (2007)) where a bidder’s reference point changes when

contemplating deviations, i.e. an equilibrium b∗ satisfies U(b∗, θ|b∗) ≥ U(b, θ|b)
for any deviation b. Rosato (2020) provides an extension of this static CPE

concept to dynamic decision problems: gains and losses materialize only when

transfers are made. Anticipating future decisions and using backward induction

a bidder at each point in time then faces a (static) CPE decision problem, where

she evaluates expected utility Ut(b, θ|b) as the sum of expected classical utility

and (final period) expected gain-loss utility using current beliefs about future

plans and uncertainty.

As an important difference to the PE concept used in my paper, Rosato’s

concept of sequential CPE (SCPE) does not provide a model of news utility since

bidders don’t perceive gains and losses from belief changes during the auction.

Hence, it is unable to draw a comparison to the Vickrey auction on the effect

of belief fluctuations and does not give scope for strategic incentives to mitigate

surprises (insurance effect).

I now show that the discouragement effect and the implied revenue ranking

between the two auction formats obtains under SCPE. This demonstration serves

two purposes at once. First, it shows that my results are not driven by the

modeling choice in Kőszegi and Rabin (2009), i.e. that the reference point is fixed

when contemplating deviations. Second, it shows that the discouragement effect

as a driver for the revenue ranking depends only on the dynamically decreasing

belief to win, but not on the model of news utility for belief changes during the

auction.

For the static Vickrey auction SCPE reduces to standard CPE. Proposition 3

in Lange and Ratan (2010) provides the respective symmetric equilibrium bidding

function

b(θ) =
(

1− Λ
(
1− 2Gn−1(θ)

))
θ.

Again, due to the attachment effect, high types overbid, increasingly so in their

belief to win.

For the English auction call ∆t = F (b)−F (t)
1−F (t)

the winning probability of plan b

at price t. An SCPE bidding plan b necessarily implies that a bidder does not

want to deviate and drop out at any price t < b. Since a dropout yields a utility
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of zero, by Lemma 1 this condition reads

−∆t(1−∆t)Λ + ∆t(θ − t) ≥ 0,

which solves to

t ≤ (1− (1−∆t)Λ)θ.

For a continuous belief F and t→ b one has ∆t → 0, and hence

b(θ) ≤ (1− Λ)θ.

Hence, for all types θ > θmin bids are strictly higher in the Vickrey auction, and

the Vickrey auction yields higher revenue.

6.2 Loss Aversion in the Money Dimensions

When bidders are loss averse with respect to both commodity dimensions, all

intuitions about the insurance effect, the discouragement effect, and the revenue

ranking remain unchanged.

The Vickrey Auction

Denote in short with Fb ≡ Fm
0 (b, θ,H) the distribution of payments for a submit-

ted bid b given the continuous distribution of the highest opponent bid H. Since

with probability 1−H(b) a bidder loses and pays nothing, the distribution Fb is

given by

Fb(s) =

1−H(b) +H(s) s ≤ b,

1 s > x,

For a reference point induced by bid b∗ a realized payment of x induces gain-

loss utility

∫ 1

0

µm(cFb∗ (p)− x)dp =

∫ ∞
0

µm(s− x)dFb∗(s)

=
(
1−H(b∗)

)
µm(−x) +

∫ b∗

0

µm(s− x)dH(s),

where the first equality follows from the fact that integration by dFb∗ is the

pushforward of Lebesgue integration under cFb∗ : (0, 1) → R+ (see, for instance,
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Theorem 1.104 in Klenke (2013)).

Hence, expected gain-loss utility in the money dimension from a bid b when

the reference point is given by bid b∗ is

Lm0 (b, θ,H|b∗) =

∫ ∞
0

(
(1−H(b∗))µm(−x) +

∫ b∗

0

µm(s− x)dH(s)

)
dFb(x)

=

∫ b

0

(
(1−H(b∗))µm(−x) +

∫ b∗

0

µm(s− x)dH(s)

)
dH(x)

+ (1−H(b))

∫ b∗

0

µm(s)dH(s),

where I used that x is zero with probability 1−H(b). Intuitively, the first sum-

mand is the loss from winning and paying unexpectedly, the second summand is

gain-loss utility from winning at a price different than expected, and the third

summand is the gain from losing unexpectedly and not paying. For total ex-

pected utility I put together the derived gain-loss utility in the money dimension

with classical utility and gain-loss utility in the good dimension as derived in

Section 4.1.

U0(b, θ|b∗) =

∫ b

0

(θ − x)dH(x) +
(
1−H(b)

)
H(b∗)µg(−θ) +H(b)

(
1−H(b∗)

)
µg(θ)

+ (1−H(b∗)

∫ b

0

µm(−x)dH(x) +

∫ b

0

∫ b∗

0

µm(s− x)dH(s)dH(x)

+ (1−H(b))

∫ b∗

0

µm(s)dH(s).

In equilibrium the order statistic H is again endogenously determined by the op-

ponents’ equilibrium bids. Using the opponents’ response functions, it is straight-

forward to calculate the symmetric equilibrium bidding function:

Proposition 4. Consider n loss-averse bidders in the Vickrey auction. Then the

unique symmetric increasing continuously differentiable UPE for is given by

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ

+

∫ θ

θmin

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm

(
Gn−1(θ)−Gn−1(x)

))
dGn−1(x).

Note that b(θmin) = 1+ηg
1+λmηm

θmin, while any θ > θmin yields b(θ) > 1+ηg+ΛgGn−1(θ)

1+λmηm
θ >
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1+ηg
1+λmηm

θ. In particular, for equally weighted loss aversion in both dimensions,

there is now a meaningful comparison to the model with risk neutrality. Low

types underbid compared to the risk-neutral benchmark, while

b(θmax) >
1 + η + ΛGn−1(θmax)

1 + λη
θmax =

1 + η + Λ

1 + λη
θmax = θmax

shows that high types overbid. The reason is again the attachment effect.

The English Auction

I concisely develop the equilibrium characterization along the lines of the

baseline model. Similar to Proposition 2 the following Lemma derives reference-

dependent utility from deviations and expected news utility from the auction

process.

Lemma 5. At time t total expected deviation utility with loss aversion in both

dimensions is

Ut(b, θ, F |b∗) =

∫ b
t (θ − x)dF (x)

1− F (t)
+
µg(F (b)− F (b∗))θ

1− F (t)
+
µm

(∫ b
b∗ −xdF (x)

)
1− F (t)

+Lgt (b, θ, F |b)+Lmt (b, θ, F |b),

where Lgt (b, θ, F |b) is expected news utility in good as in Proposition 2, and

Lmt (b, θ, F |b) = −Λm

∫ b

t

f(s)

1− F (t)

(
1− F (b)

1− F (s)
s+

∫ b

s

F (b)− F (x)

1− F (s)
dx

)
ds.

Figure 7 shows expected gain-loss utility in money for a uniform maximal

opponent bid. Similar to Figure 3 losses are strongest for intermediate bids.

Again, expected loss around the highest bid is decreasing with unbounded slope.

Intuitively, a strong bid shifts mass in the payment distribution from zero to high

payments, which reduces payment uncertainty in the late auction for bidders who

are likely to pay a high price.

Similar to Lemma 2 and Lemma 3, I derive the ex-ante optimum and the time

consistency constraint.

Lemma 6. If bidders could commit to a strategy ex ante, the lowest symmetric
PE would satisfy

bex ante(θ) =
(

1+λmηm+Λm−Λm ln(1−Gn−1(θ))
)∫ θ

0

1 + ηg − Λg − Λg ln(1−Gn−1(s)) + Λg
(n−1)g(s)Gn−2s

1−Gn−1(s)

(1 + λmηm + Λm − Λm ln(1−Gn−1(s)))2

 ds.
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Figure 7: Total Expected Loss in money for F ∼ U [0, 1]

Any time-consistent bidding plan necessarily satisfies

b(θ) ≤ 1 + ηg
1 + λmηm

θ.

Again, bidders have an incentive to insure against belief fluctuations ex ante.

In particular, high types would like to excessively overbid. However, again bidders

eventually become discouraged, and time consistency requires bidding at most
1+ηg

1+λmηm
θ, identical to the lowest type in the Vickrey auction.

I define

b(θ) = min

{
bex ante(θ),

1 + ηg
1 + λmηm

θ

}
.

Proposition 5. Any symmetric PE in the English auction is bounded from above

by 1+ηg
1+λmηm

θ and bounded from below by b(θ). If ηg ≥ ηm and λg ≥ λm then the

lower bound is attained, and b(θ) is the lowest symmetric PE.22

Figure 8 summarizes the above results. The gray shaded area together with its

upper bound line depict the region of potential PE. For equally pronounced loss

aversion in both dimensions the upper bound is below the risk-neutral bidding

function, and all types underbid in the English auction. Since in the Vickrey

auction bV(θ) ≥ 1+ηg
1+λmηm

θ, with equality only for θmin, and in the English auction

by time consistency bE(θ) ≤ 1+ηg
1+λmηm

θ, it is immediate that the Vickrey auction

remains to generate higher revenue.

22Intuitively, more pronounced losses in the good dimension ensure that the insurance effect
is strongest at time zero, such that it suffices to look at ex-ante incentives for upward deviations.
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Figure 8: Gn−1(θ) ∼ U [0, 1], ηg = ηm = 0.4, λg = λm = 3

6.3 Observable Dropouts

In this section, I analyze a model where opponents’ dropout prices are observable.

I show that any PE strategy is necessarily history dependent. I establish the

discouragement effect and the revenue ranking for any PE with continuous beliefs.

Then I derive the unique symmetric equilibrium for the three-bidder case and

show non-existence of symmetric equilibria for more than three bidders.

In order to deal with strategies contingent on histories, I introduce the fol-

lowing notation:

Definition 4. For any n-bidder auction, define for all k ∈ {0, ..., n− 2}

Hk = {(t1, ..., tk)|0 ≤ t1 ≤, ...,≤ tk}

as the set of histories / future contingencies with k dropouts at the respective

prices t1, ..., tk, with the convention H0 = {∅}.

With this notation, a complete bidding plan prescribes for each history and

future contingency the price at which a bidder of type θ plans to drop out:

Definition 5. A pure strategy bidding plan prescribes a bidding strategy

b :
⋃

0≤k≤n−2

Hk × [θmin, θmax]→ R+,
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with the restriction that for any (t1, ..., tk, θ)

b(t1, ..., tk, θ) > tk.

The latter condition on the bidding function ensures that bidders cannot

condition their dropout on events that happen after the dropout. For notational

convenience, I usually omit the type as an argument of the strategy b(hk).

Denote for any history hk ∈ Hk with Fhk(s) the belief about the k + 1-th

drop-out price s as held at price tk. I call a bidder’s belief continuous if for all

possible histories hk the distributions Fhk(s) are continuous in s.

I now derive an iterative formula for expected news utility of a bidder of type

θ at the time of an opponent dropout. For k = n−2 the two-bidder auction after

some dropout history hk yields by Proposition 2 an expected news utility of

Lhk(b(hk)) = Λ ln
(

1− Fhk(b(hk))
)(

1− Fhk(b(hk))
)
θ. (9)

I call for hk = (t1, ..., tk)

Phk(s) =
Fhk(b(hk))− Fhk(s)

1− Fhk(s))
(10)

the belief to win this two-bidder auction as held at price s > tk for history hk.

For k ∈ {0, ..., n− 1} I define (backward) inductively

Phk(s) =

∫ b(hk)

s

P(hk,tk+1)(tk+1)dFhk(tk+1|s), (11)

where Fhk(t|s) =
Fhk (t)−Fhk (s)

1−Fhk (s)
is the belief about the next dropout at t as held

at s with dropout history hk.
Notice that for any history hk = (t1, ..., tk) and increments of ε a dropout at

tk+1 > tk updates the winning probability from Phk(tk+1− ε) to P(hk,tk+1)(tk+1).23

For continuous strategies in the continuous English auction Lemma 1 then implies
the following formula for total news utility:

Lhk
(b(hk)) =

∫ b(hk)

tk

−Λθ
∣∣Phk

(tk+1)− P(hk,tk+1)(tk+1)
∣∣+ L(hk,tk+1)(b(hk, tk+1))dFhk

(tk+1)

(12)

23This formulation does not account for the possibility of multiple dropouts at the same time.
With the natural assumption that any opponent dropout increases the winning probability,
there is no loss in assuming multiple distinct updates in this case. Moreover, for any continuous
belief in a continuous auction the event of multiple dropouts at the same price is an event of
measure zero, and does not enter considerations about utility maximization.
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Proposition 6. For any belief the set of PE and PPE is nonempty. For any

continuous belief as the increment size goes to zero any PE approaches a function

bounded from above by (1 + η)θ.

Proposition 6 captures the central intuition that was already present without

observable dropouts. Any equilibrium bidding limit must be a time-consistent

plan. Since at the time the price has reached the limit, the belief to win has

decreased to zero for any continuous belief. Thus, the attachment effect has

vanished, and bidding above (1 + η)θ is time inconsistent.

Symmetric Equilibria

For symmetric increasing bidding functions it follows for types s, t that Phk(b(hk, s)) =(
G(θ)−G(s)

1−G(s)

)n−k−1

and Fhk(b(hk, s)|b(hk, t)) = 1 −
(

1−G(s)
1−G(t)

)n−k−1

. It is then con-

venient to index the expected loss function with the number of bidders, rather

than histories, and take types as argument, rather than bids. With this slight

change in notation I define Gn(s|t) ≡ 1 −
(

1−G(s)
1−G(t)

)n
, and obtain from Equation

(12) the following formula for total expected gain-loss utility for the remaining

auction with n opponents at a price where type t would have dropped out:

Ln(t, θ) =

∫ θ

t

gn(s|t)

[
−Λθ

((
G(θ)−G(s)

1−G(s)

)n−1
−
(
G(θ)−G(s)

1−G(s)

)n)
+ Ln−1(s, θ)

]
ds

(13)

Note that for t = θmin I obtain a formula for total expected loss, which is

independent of the bidding function. Indeed, belief fluctuations in a symmetric

increasing equilibrium are fully determined by the realization of types. Since

only a dropout that terminates the auction affects the price, it follows that any

symmetric increasing equilibrium can only be determined up to monotone trans-

formations of the bidding functions b(hk, θ) for any k < n− 2.

The symmetric equilibrium for 3 bidders

As any symmetric continuously increasing equilibrium
(
b(θ), b(s, θ)

)
does not

essentially change under monotone transformations of b(θ), any such equilibrium

for the three-bidder auction is “essentially uniquely” described by b(s, θ), the

maximal bid of a type-θ bidder, when the first dropout is of type s.

Denote with θ̂(s) a deviation from equilibrium that prescribes a dropout price

b(s, θ̂(s)) for all s. Using (12) and (13), total expected news utility with three
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active bidders from price b(t) onwards is

L2(t, θ̂(s)) =

∫ θ

t

2g(s)(1−G(s))

(1−G(t))2

[
−Λθ

(
G(θ̂(s))−G(s)

1−G(s)
−
∫ θ

s

2g(x)

(1−G(s))2
(
G(θ̂(x))−G(x)

)
dx

)
+
θL1(s, θ̂(s))

θ̂(s)

]
ds.

Proposition 7. The essentially unique symmetric, continuously increasing equi-

librium of the continuous English auction with three bidders and observable dropouts

is given by

b(s, θ) = min

{
(1 + η)θ,

(
1 + η − Λ

(
1 + ln

(
1−G(θ)

1−G(s)

)))
θ

}
.

Figure 9 shows equilibrium bidding functions for various lowest realizations

s. The dashed function indicates the benchmark with unobservable dropouts.

Any symmetric equilibrium plan b(s, θ) is constrained by the conditions of equi-

libria for the two-bidder auction following the dropout of type s, as outlined in

Proposition 3.

Since beliefs fluctuate more compared to the model with unobservable dropouts,

expected losses from news are strictly higher. In particular the additional update

from the first dropout creates an incentive to bid low in the two-bidder subgame

to mitigate this update. As a result, the lowest PE for the subsequent two bid-

der auction remains as the only time-consistent strategy. Since the two-bidder

auction itself is subject to the insurance effect as outlined in Lemma 2, and in-

creasingly so in the duration of that auction, the bid b(s, θ) depends on s, the

time where the first dropout occurs two-bidder part of the auction starts. Hence,

equilibrium bids weakly decrease in the type of the first dropout, and are there-

fore history dependent. It is worth emphasizing that the set of PE at any time

t looking forward is history independent. However, the ex-ante time-consistent

choice within that set depends on the dropout history before time t.

No symmetric equilibria for more than 3 bidders

With more than three bidders, observable dropouts, and instantaneous updating,

belief fluctuations lead to substantial losses in news utility, which exceed expected

gains from trade for low types. Hence, participation becomes a central issue.

Strictly increasing equilibria fail to exist, since the lowest types would always

prefer to stay out of the auction. Therefore, I focus on weakly increasing sym-

metric equilibria, in order to allow for bunching and collective non-participation
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Figure 9: G(θ) ∼ U [0, 1], η = 0.3, λ = 4

of types below some threshold. But even then the following result holds:

Proposition 8. With more than three bidders, observable dropouts, and instan-

taneous updating there exist no weakly increasing symmetric equilibria.

The idea of the proof is to show that for any potential equilibrium there must

be some interval of types for which the bidding function in some contingency

does not have atoms. But then as the winning probability P of a θ-type bidder

from that interval approaches zero, expected losses from news utility are of order

PΛnθ, with n the number of active opponents. These losses exceed the potential

gains from trade, and the bidder prefers to drop out immediately rather than

follow the equilibrium plan.

The non-existence result is driven by the stark assumption of instantaneous

updating. While this assumption is innocuous in the baseline model, since up-

dating will unambiguously bring bad news until the bidder wins, it may be inap-

propriate in settings with strong belief fluctuations.

As shown in Appendix 6.1, the modeling choices of news utility are not the

force behind the discouragement effect, which drives low bids in the English

auction. Hence, the logic of Proposition 6 remains unchanged in a model without

news utility or with less frequent updating.
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6.4 Proofs

Proof of Proposition 1. Suppose that all opponents bid according to some in-

creasing, continuously differentiable bidding function b(θ). Since G(θ) is a distri-

bution with strictly positive, continuous density g, it follows that the distribution

of the maximal opponent bid, H(x) = Gn−1(b−1(x)), is a differentiable distribu-

tion with positive, continuous density h(x) on [b(θmin), b(θmax)] as well.

The bidding function b(θ) constitutes a PE if and only if the utility function

U0(x, θ|b(θ)) attains its maximum at x = b(θ) for all θ. Differentiation with

respect to x yields

∂U0(x, θ|b(θ))
∂x

=h(x)
(
1−H(b(θ))

)
µ(θ)− h(x)H(b(θ))µ(−θ) + (θ − x)h(x).

Dividing by h(x) and evaluating at x = b(θ) yields the first-order condition

0 =
(
1−H(b(θ))

)
ηθ +H(b(θ))ληθ + (θ − b(θ)).

Rearranging yields

b(θ) =
(

1 + η
(
1−H(b(θ))

)
+ ληH(b(θ))

)
θ. (14)

Since H(b(θ)) = Gn−1(θ) one obtains

b(θ) =
(

1 + η
(
1−Gn−1(θ)

)
+ ληGn−1(θ)

)
θ

as the unique equilibrium candidate. For sufficiency note first that

h(b(θ)) =
(Gn−1)′(θ)

b′(θ)
=

(n− 1)Gn−2(θ)g(θ)

1 + η
(
1−Gn−1(θ)

)
+ ληGn−1(θ) + Λ(n− 1)Gn−2(θ)g(θ)θ

is differentiable since g(θ) is differentiable. Now it is immediate that

∂2U0(x, θ|b(θ))
(∂x)2

∣∣
x=b(θ)

= −h
(
b(θ)

)
+ h′

(
b(θ)

) [
θ − b(θ) +

(
1−H(b(θ))

)
µ(θ)−H(b(θ))µ(−θ)

]
︸ ︷︷ ︸

=0

< 0.

Proof of Lemma 1. For calculating the ex-ante expected gain-loss utility, it is
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more convenient to work with distribution functions rather than with quantile

functions. This is possible, since they are generalized inverses of each other, and

the integral between functions equals the integral between their inverses up to

the sign:

Lemma 7. Let F1 and F2 be distributions on some interval [a, b] and let cF1, cF2

be the respective quantile functions. Then∫ b

a

µ(F1(x)− F2(x))dx =

∫ 1

0

µ(cF2(p)− cF1(p))dp.

Proof of Lemma 7. Suppose first that F1 and F2 are invertible on [a, b]. By the

theorem of the integral over inverse functions (e.g. Theorem 1 in Key (1994)),

any invertible distribution F on [a, b] satisfies∫ b

a

F (x)dx = bF (b)− aF (a)−
∫ 1

0

cF (p)dp = b−
∫ 1

0

cF (p)dp,

which implies∫ b

a

(F1(x)−F2(x))dx = (b−b)−
∫ 1

0

cF1(p)dp+

∫ 1

0

cF2(p)dp =

∫ 1

0

(cF2(p)−cF1(p))dp.

Define now

F+
1 (x) =

F1(x) F1(x) > F2(x),

F2(x) F1(x) ≤ F2(x),

and similarly

F−1 (x) =

F1(x) F1(x) ≤ F2(x),

F2(x) F1(x) > F2(x).

By construction, F+
1 and F−1 are invertible and satisfy F+

1 (x) ≥ F2(x) ≥ F−1 (x)

for all x ∈ [a, b], and moreover

cF+
1

(p) =

cF1(p) F1(cF1(p)) > F2(cF1(p)),

cF2(p) F1(cF1(p)) ≤ F2(cF1(p)),

and

cF−1 (p) =

cF1(p) F1(cF1(p)) ≤ F2(cF1(p)),

cF2(p) F1(cF1(p)) > F2(cF1(p)),
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for all p ∈ [0, 1]. With these constructions I obtain∫ b

a

µ(F1(x)− F2(x))dx

=

∫ b

a

η(F+
1 (x)− F2(x))dx+

∫ b

a

λη(F−1 (x)− F2(x))dx

=

∫ 1

0

η(cF2(p)− cF+
1

(p))dp+

∫ 1

0

λη(cF2(p)− cF−1 (p))dp

=

∫ 1

0

µ(cF2(p)− cF1(p))1F1(cF1 (p))>F2(cF1 (p))dp+

∫ 1

0

µ(cF2(p)− cF1(p))1F1(cF1 (p))≤F2(cF1 (p))dp

=

∫ 1

0

µ(cF2(p)− cF1(p))d(p),

which proves the lemma for invertible distributions. I now show the lemma for

general distribution functions, when the quantile functions cFi are defined as usual

by

cFi(p) = inf{x ∈ R|p ≤ F (x)}.

Take two arbitrary sequences of continuously increasing distribution functions

(F1,n), (F2,n) which converge pointwise Fi,n → Fi everywhere outside the null-set

of discontinuity points of Fi for i = 1, 2.24 By Theorem 1.1.1 in De Haan and

Ferreira (2007), limn→∞ Fi,n(x) = Fi(x) for all continuity points of Fi implies

limn→∞ cFi,n(p) = cFi(p) for all continuity points of cFi(p). Using Lebesgue’s

dominated convergence theorem and that the set of discontinuity points is a null-

set, ∫ b

a

µ(F1(x)− F2(x))dx =

∫ b

a

lim
n→∞

µ(F1,n(x)− F2,n(x))dx

= lim
n→∞

∫ b

a

µ(F1,n(x)− F2,n(x))dx

= lim
n→∞

∫ 1

0

µ(cF2,n(p)− cF1,n(p))d(p)

=

∫ 1

0

lim
n→∞

µ(cF2,n(p)− cF1,n(p))d(p)

=

∫ 1

0

µ(cF2(p)− cF1(p))d(p),

24To see existence of such a sequence, take a positive sequence εn → 0 and define
Fi,n = (1− εn)Gi,n + εn

x−a
b−a , where Gi,n is the continuous function which is linear on εn-balls

around any discontinuity point of Fi and coincides with Fi elsewhere.
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which concludes the proof for arbitrary distributions.

By applying Lemma 7, and using the fact that µ is piecewise linear, one can

write

E(N(Fi|F )) = ∆N(F1|F ) + (1−∆)N(F2|F )

= ∆

∫ 1

0

µ(cF1(p)− cF (p))dp+ (1−∆)

∫ 1

0

µ(cF2(p)− cF (p))dp

= ∆

∫ b

a

µ(F (x)− F1(x))dx+ (1−∆)

∫ b

a

µ(F (x)− F2(x))dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ
(
(1−∆)F (x)− (1−∆)F2(x)

)
dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ
(
(1−∆)F (x)− (F (x)−∆F1(x))

)
dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+

∫ b

a

µ
(
−∆F (x) + ∆F1(x)

)
dx

= ∆

∫ b

a

µ(F (x)− F1(x))dx+ ∆

∫ b

a

µ(−F (x) + F1(x))dx

= ∆(−λη + η)

∫ b

a

|F (x)− F1(x)|dx

= −∆Λ

∫ b

a

|F (x)− F1(x)|dx.

Proof of Proposition 2. Suppose the current clock price is t and the opponent

hasn’t dropped out yet. I start with calculating the deviation utilityN(Ft(b, θ, F )|Ft(b∗, θ, F )).

At time t the winning probability is the probability that the opponent drops

out between t and b∗, given she didn’t drop out before t, thus F (b∗)−F (t)
1−F (t)

. The

update changes the probability of getting a utility of θ by

F (b)− F (t)

1− F (t)
− F (b∗)− F (t)

1− F (t)
=
F (b)− F (b∗)

1− F (t)
.

Hence,

N(F b
t |F b∗

t ) = µ

(
F (b)− F (b∗)

1− F (t)
θ

)
=
µ(F (b)− F (b∗))

1− F (t)
θ.

Now I turn to the expected gain-loss utility from a bid b. If the clock increases

in increments of ε, then the conditional probability that the opponent drops out
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at the next increment is given by

∆t :=
F (t+ ε)− F (t)

1− F (t)
.

Given her strategy b and that the opponent hasn’t dropped out until t, the bidder

faces the conditional probability of 1−F (b)
1−F (t)

to lose the auction. Denote with F b
t

the belief about payoffs in the good dimension at time t given strategy b, i.e.

F b
t (z) =


1−F (b)
1−F (t)

z < θ,

1 z ≥ θ.

If the bidder wins in the next increment, the belief will update to

F b
t+ε(z) =

0 z < θ,

1 z ≥ θ.

According to Lemma 1, expected gain-loss utility of the increment from t to t+ ε

is then given by

E(N(F b
t+ε|F b

t )) = −∆tΛ

∫
|F b
t (z)− F b

t+ε(z)|dz = −∆tΛ
1− F (b)

1− F (t)
θ.

Now, the marginal loss at time t if ε goes to zero reads

`t(b, θ, F ) = lim
ε→0

−∆tΛ
1−F (b)
1−F (t)

θ

ε
=

−f(t)

(1− F (t))2
(1− F (b))Λθ.

To calculate total expected gain-loss utility starting at time t, note that any

information update at time s > t is only informative and carries gain-loss utility

if the opponent hasn’t already dropped out between t and s, which holds true
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with the conditional probability 1−F (s)
1−F (t)

. Thus

Lt(b, θ, F |b) = lim
ε→0

b b−t
ε
c−1∑

i=0

N(F b
t+(i+1)ε|F b

t+iε)

= lim
ε→0

b b−t
ε
c−1∑

i=0

−1− F (t+ iε)

1− F (t)
∆t+iεΛ

1− F (b)

1− F (t+ iε)
θ

=

∫ b

t

−f(s)

1− F (s)

1− F (b)

1− F (t)
Λθds

=
(

ln(1− F (b))− ln(1− F (t))
)1− F (b)

1− F (t)
Λθ

= ln

(
1− F (b)

1− F (t)

)
1− F (b)

1− F (t)
Λθ.

Proof of Lemma 2. Given the distribution of the maximal opponent bid F and

bidder’s type θ, a bid b(θ) is a personal equilibrium in the auction with commit-

ment if and only if

U0

(
y, θ, F |b(θ)

)
≤ U0

(
b(θ), θ, F |b(θ)

)
for all y. In particular, it is necessary that

lim
y↘b(θ)

∂U0

(
y, θ, F |b(θ)

)
∂y

≤ 0.

By Equation (6) the utility for y > b(θ) at time zero reads

U0

(
y, θ, F |b(θ)

)
=

∫ y

0

(θ−s)dF (s)+η
(
F (y)−F (b(θ))

)
θ+ln

(
1−F (y)

)(
1−F (y)

)
Λθ.

Hence, the necessary condition is equivalent to

f(b(θ))
(
θ − b(θ) + ηθ − Λ

(
1 + ln(1− F (b(θ)))

)
θ
)
≤ 0.

In any symmetric equilibrium, the opponents bid according to b(θ) as well, and

therefore F (b(θ)) = Gn−1(θ). From (Gn−1)′(θ) = f(b(θ))b′(θ) and the restriction
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that b is increasing it follows that f(b(θ)) > 0. Hence,

b(θ) ≥
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ

for any equilibrium candidate. Note that for any such candidate the participation

constraint is satisfied for every bidder, since, by the assumption that Λ < 1 + η,

we have

b(θ) ≥
(
1 + η − Λ

)
θ > 0.

It remains to verify that

b(θ) =
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ (15)

is a personal equilibrium, given opponent’s response b(θ). For this it is sufficient

to show that
∂U0

(
y, θ, F |b(θ)

)
∂y

≤ 0

for all y > b(θ), and
∂U0

(
y, θ, F |b(θ)

)
∂y

≥ 0

for all y < b(θ). Note that I can without loss of generality restrict to y ∈ [b(θmin), b(θmax)].

For any such y there exists some θ̃ with y = b(θ̃), since the bidding function

is continuous.

Consider first y > b(θ), thus θ̃ > θ. Then

∂U0

(
y, θ, F |b(θ)

)
∂y

|y=b(θ̃) = f(b(θ̃))
(
θ − b(θ̃) + ηθ − Λ

(
1 + ln(1− F (b(θ̃)))

)
θ
)

< f(b(θ̃))
(
θ̃ − b(θ̃) + ηθ̃ − Λ

(
1 + ln(1− F (b(θ̃)))

)
θ̃
)

= lim
y↘b(θ̃)

∂U0

(
y, θ̃, F |b(θ̃)

)
∂y

= 0,

where the last equality is due to equality in (15). Similarly, for y < b(θ), thus
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θ̃ < θ,

∂U0

(
y, θ, F |b(θ)

)
∂y

|y=b(θ̃) = f(b(θ̃))
(
θ − b(θ̃) + ληθ − Λ

(
1 + ln(1− F (b(θ̃)))

)
θ
)

> f(b(θ̃))
(
θ̃ − b(θ̃) + ηθ̃ − Λ

(
1 + ln(1− F (b(θ̃)))

)
θ̃
)

= lim
y↘b(θ̃)

∂U0

(
y, θ̃, F |b(θ̃)

)
∂y

= 0.

Proof of Lemma 3. The bidder does not want do deviate to a lower strategy y at

any time t, given plan b if and only if

Ut(y, θ, F |b) ≤ Ut(b, θ, F |b)

for all t ≤ y ≤ b. In particular it is necessary that for all t < b the derivative

from the left satisfies

0 ≤ lim
y↗b

∂Ut(y, θ, F |b)
∂y

=
f(b)

1− F (t)

(
θ − b+ ληθ − Λ

(
1 + ln

(
1− F (b)

1− F (t)

))
θ

)
.

This expression is well defined, since F (t) < F (b) < 1. Now, as t approaches b

one obtains

0 ≤ lim
t→b

f(b)

1− F (t)

(
θ − b+ ληθ − Λ

(
1 + ln

(
1− F (b)

1− F (t)

))
θ

)
=

f(b)

1− F (b)
(θ − b+ ληθ − Λθ) .

Since, by assumption, f(b) > 0, this means that necessarily

b ≤ (1 + λη − Λ)θ = (1 + η)θ.

Proof of Lemma 4. Consider a bidding strategy b∗.

Claim 1: If and only if b∗ ≤ (1 + η)θ, it is at no time t < b∗ profitable to
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deviate to a lower strategy b ∈ [t, b∗).

Proof: Necessity has been proved in Lemma 3. For sufficiency suppose that

b∗ ≤ (1 + η)θ. Consider a deviation at some time t < b∗ from b∗ to b ∈ [t, b∗). I

first look at the change in expected gain-loss disutility: term A can be interpreted

as the change due to different expectations at each time between t and b, while

term B is forgone gain-loss disutility, since the auction necessarily ends at b:

Lt(b, θ, F |b)− Lt(b∗, θ, F |b∗)

=Λθ

(
ln

(
1− F (b)

1− F (t)

)
1− F (b)

1− F (t)
− ln

(
1− F (b∗)

1− F (t)

)
1− F (b∗)

1− F (t)

)
=Λθ

(∫ b

t

−f(s)

1− F (s)
ds

1− F (b)

1− F (t)
−
∫ b∗

t

−f(s)

1− F (s)
ds

1− F (b∗)

1− F (t)

)
=Λθ

(∫ b

t

−f(s)

1− F (s)
ds

1− F (b)

1− F (t)
−
∫ b

t

−f(s)

1− F (s)
ds

1− F (b∗)

1− F (t)
−
∫ b∗

b

−f(s)

1− F (s)
ds

1− F (b∗)

1− F (t)

)

=Λθ

∫ b

t

−f(s)

1− F (s)
ds
F (b∗)− F (b)

1− F (t)︸ ︷︷ ︸
A

−
∫ b∗

b

−f(s)

1− F (s)
ds

1− F (b∗)

1− F (t)︸ ︷︷ ︸
B


≤Λθ

∫ b∗

b

f(s)

1− F (s)
ds

1− F (b∗)

1− F (t)

<Λθ

∫ b∗

b

f(s)ds
1− F (b∗)

(1− F (b∗))(1− F (t))

=Λθ
F (b∗)− F (b)

1− F (t)
.
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Now, I have

Ut(b, θ, F |b∗)− Ut(b∗, θ, F |b∗)

<
1

1− F (t)

(
−
∫ b∗

b

(θ − s)dF (s) + µ(F (b)− F (b∗))θ + Λθ(F (b∗)− F (b))

)

<
F (b∗)− F (b)

1− F (t)
(−θ + b∗ − ληθ + Λθ)

=
F (b∗)− F (b)

1− F (t)
(−(1 + η)θ + b∗)

≤0.

Thus, there is no profitable deviation to b < b∗ at any time, which concludes the

proof of Claim 1.

Claim 1 directly shows the necessity of 1. in Lemma 4 for any PE. Certainly,

2. is necessary as well.

To show sufficiency I start with showing the following claim.

Claim 2: If it is not profitable to deviate to a strategy b > b∗ at time t = 0,

then it is not profitable at any time t ≤ b∗.

Proof: It is not profitable to deviate to a strategy b > b∗ at time t if and only if

0 ≥ Ut(b, θ, F |b∗)− Ut(b∗, θ, F |b∗)
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Now,

Ut(b, θ, F |b∗)− Ut(b∗, θ, F |b∗)

=
1

1− F (t)

(∫ b

b∗
(θ − s)dF (s) + µ(F (b)− F (b∗))θ

)

+ Λθ

(
1− F (b)

1− F (t)
ln

(
1− F (b)

1− F (t)

)
− 1− F (b∗)

1− F (t)
ln

(
1− F (b∗)

1− F (t)

))

=
1

1− F (t)

(∫ b

b∗
(θ − s)dF (s) + µ(F (b)− F (b∗))θ ...

...+ Λθ
(

(1− F (b)) ln(1− F (b))− (1− F (b∗)) ln(1− F (b∗)) + (F (b)− F (b∗)) ln(1− F (t))
))

.

Note that the expression in the big brackets is decreasing in t. Thus, if it is

negative for t = 0, then it is as well negative for all t > 0. Hence, if

0 ≥ U0(b, θ, F |b∗)− U0(b∗, θ, F |b∗)

then

0 ≥ Ut(b, θ, F |b∗)− Ut(b∗, θ, F |b∗)

for all t > 0, which concludes the proof of Claim 2.

I am ready to show sufficiency: suppose 1. and 2. hold. Then by Claim 1 it

can’t be profitable to deviate to a lower strategy at any time. To show that there

is no profitable deviation to a higher strategy, take any time-consistent strategy

b ≥ b∗. By Claim 1 this necessarily means b ∈ [b∗, (1 + η)θ]. From 2. it follows

that U0(b∗, θ, F |b∗) ≥ U0(b, θ, F |b∗). Then, by Claim 2, the bidder does not want

to deviate to a higher strategy at any time, and b∗ is indeed a PE.

Proof of Proposition 3. Take some increasing equilibrium function. By Lemma

4, it satisfies b(θ) ≤ (1 + η)θ for all θ ∈ (θmin, θmax). If b(θ) < (1 +η)θ for some θ,

then—again by Lemma 4—any y ∈ [b(θ), (1 + η)θ] satisfies U0(b(θ), θ, F |b(θ)) ≥
U0(y, θ, F |b(θ)). This means that for the right-derrivative

lim
y↘b(θ)

∂U0(y, θ, F |b(θ))
∂y

≤ 0,
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which—as derived in the proof of Lemma 2—straightforwardly solves to

b(θ) ≥
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ))

))
θ.

This shows that any increasing equilibrium satisfies 1. and 2. for all θ ∈ (θmin, θmax).

By continuity it also holds for all θ ∈ [θmin, θmax]. Conversely, assume that b(θ)

satisfies 1. and 2. By Lemma 4 it only remains to show that for any

y ∈ [b(θ), (1 + η)θ]

it holds that

U0

(
b(θ), θ, F |b(θ)

)
≥ U0

(
y, θ, F |b(θ)

)
.

This condition is trivially satisfied for any θ with b(θ) = (1 + η)θ. Consider

therefore θ with b(θ) < (1 + η)θ. It suffices to show that

∂U0(y, θ, F |b(θ))
∂y

≤ 0

for all y ∈ (b(θ), (1 + η)θ). Let ỹ be any of such y. Since

b(θmax) = (1 + η)θmax > (1 + η)θ > ỹ > b(θ),

and b is continuous, there exists some θ̃ > θ with b(θ̃) = ỹ. Since (1 + η)θ̃ >

(1 + η)θ > ỹ = b(θ̃), it follows from 2. that

b(θ̃) ≥
(

1 + η − Λ
(
1 + ln(1−Gn−1(θ̃))

))
θ̃.

Now,

∂U0(y, θ, F |b(θ))
∂y

∣∣
y=ỹ

= [(1 + η)θ − ỹ − Λθ(1 + ln(1− F (ỹ)))]f(ỹ)

=
[ (

1 + η − Λ
(
1 + ln(1− F (b(θ̃)))

))
︸ ︷︷ ︸

>0

θ − b(θ̃)
]
f(b(θ̃))

≤
[ (

1 + η − Λ
(
1 + ln(1− F (b(θ̃)))

))
θ̃︸ ︷︷ ︸

≤b(θ̃)

−b(θ̃)
]
f(b(θ̃))

≤ 0.
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Proof of Corollary 1. The condition(
1 + η − Λ

(
1 + ln(1−Gn−1(θ))

))
θ ≤ (1 + η)θ

holds if and only if −
(
1 + ln(1−Gn−1(θ))

)
≤ 0, which is equivalent to

Gn−1(θ) ≤ 1 − 1/e. Therefore, by Proposition 3, a function b(θ) is a symmetric

equilibrium if and only if

� b(θ) ∈
[(

1+η−Λ
(
1+ln(1−Gn−1(θ))

))
θ,
(
1+η

)
θ
]

for G(θ) ≤ (1−1/e)
1

n−1 ,

� b(θ) = (1 + η)θ for G(θ) > (1− 1/e)
1

n−1 .

Next, I need to show that for any belief F the lowest PE is the one that

maximizes utility among all PE. Indeed, let b > b∗ be two PE for a given belief

F and type θ. Then, by Equation 6 and the definition of PE,

U0(b∗, θ, F |b∗) ≥ U0(b, θ, F |b∗) =

∫ b

0

(θ − s)dF (s) + µ(F (b)− F (b∗))θ + Lt(b)

>

∫ b

0

(θ − s)dF (s) + Lt(b)

= U0(b, θ, b).

Finally, since for the PPE

b(θmin) =
(

1 + η − Λ
(
1 + ln(1−G(θmin))

))
θmin = (1 + η − Λ)θmin,

there is underbidding for low types in the PPE if and only if

0 > η − Λ = 2η − λη,

hence if and only if λ > 2.

Proof of Proposition 4. The structure of the proof is similar to the one of Propo-

sition 3 in Lange and Ratan (2010). Suppose that all opponents bid according

to some increasing, continuously differentiable bidding function b(θ). Since G(θ)

is a distribution with strictly positive, continuous density g, the distribution of

the maximal opponent bid H(x) = Gn−1(b−1(x)) is a differentiable distribution

with positive, continuous density h(x) on [b(θmin), b(θmax)] as well. The bidding

function b(θ) constitutes a PE if and only if U0(y, θ|b(θ)) attains a maximum at
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y = b(θ) for all θ. Differentiation of the utility function with respect to y yields

∂U0(y, θ|b(θ))
∂y

=(θ − y)h(y) + h(y)H(b(θ))λgηgθ + h(y)
(
1−H(b(θ))

)
ηgθ

+
(
1−H(b(θ))

)
µm(−y)h(y) +

∫ b(θ)

0

µm(s− y)h(y)dH(s)

− h(y)

∫ b(θ)

0

µm(s)dH(s).

By dividing by h(y) and evaluating at y = b(θ), I obtain the first-order condition

0 =(θ − b(θ)) +
(
1−H(b(θ))

)
ηgθ +H(b(θ))λgηgθ

+
(
1−H(b(θ))

)
µm(−b(θ)) +

∫ b(θ)

0

µm(s− b(θ))dH(s)−
∫ b(θ)

0

µm(s)dH(s)

=(θ − b(θ)) +
(
1−H(b(θ))

)
ηgθ +H(b(θ))λgηgθ

+
(
1−H(b(θ))

)
(−λmηmb(θ))− λmηm

∫ b(θ)

0

(b(θ)− s)dH(s)− ηm
∫ b(θ)

0

sdH(s),

which simplifies to

0 = (1 + ηg)θ − (1 + λmηm)b(θ) + Λm

∫ b(θ)

0

sdH(s) + ΛgH(b(θ))θ. (16)

Using that H(b(θ)) = Gn−1(θ) one can rewrite this equation to

0 = (1 + ηg)θ − (1 + λmηm)b(θ) + Λm

∫ θ

0

b(s)dGn−1(s) + ΛgG
n−1(θ)θ.

Differentiation with respect to θ yields

0 = (1 + ηg)− (1 + λmηm)b′(θ) + Λmb(θ)(G
n−1)′(θ) + Λg(G

n−1(θ)θ)′.

The rearranged equation

b′(θ) =
Λm(Gn−1)′(θ)

1 + λmηm
b(θ) +

1 + ηg + Λg(θG
n−1(θ))′

1 + λmηm

is a first-order linear differential equation, which solves to

b(θ) = exp

(
Λm

1 + λmηm
Gn−1(θ)

)(∫ θ

0

1 + ηg + Λg(xG
n−1(x))′

1 + λmηm
exp

(
− Λm

1 + λmηm
Gn−1(x)

)
dx+ C

)
,
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where C is the constant of integration. Since G(x) = 0 for x ≤ θmin,

b(θmin) = exp(0)

(∫ θmin

0

1 + ηg
1 + λmηm

exp(0)dx+ C

)
=

1 + ηg
1 + λmηm

θmin + C.

To determine C, I insert θmin into equation (16) and obtain that

0 = (θmin − b(θmin)) + (−λmηmb(θmin)) + ηgθ
min,

or equivalently

b(θmin) =
1 + ηg

1 + λmηm
θmin,

which shows that C = 0. Now I can use integration by parts in order to rewrite
the solution into

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ +

∫ θ

0

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm
(Gn−1(θ)−Gn−1(x))

)
dGn−1(x).

Since G(x) = 0 for all x ≤ θmin, I finally obtain

b(θ) =
1 + ηg + ΛgG

n−1(θ)

1 + λmηm
θ+

∫ θ

θmin

Λm(1 + ηg + ΛgG
n−1(x))

(1 + λmηm)2
x exp

(
Λm

1 + λmηm

(
Gn−1(θ)−Gn−1(x)

))
dGn−1(x).

For sufficiency note first that b′(θ) is differentiable, since g(θ) is differentiable. It

follows that

h(b(θ)) =
(Gn−1)′(θ)

b′(θ)

is differentiable as well. Now it is immediate that

∂2U0(x, θ|b(θ))
(∂x)2

∣∣∣∣
x=b(θ)

=
∂

∂x

(
h(x)

∂U0(x, θ|b(θ)/∂x)

h(x)

) ∣∣∣∣
x=b(θ)

=h′(b(θ))

(
∂U0(x, θ|b(θ)/∂x)

h(x)

) ∣∣∣∣
x=b(θ)︸ ︷︷ ︸

=0

+ h(b(θ))

[
−1 +

∫ b(θ)

0

−λmηmdH(s)− λmηm
(
1−H(b(θ))

)]
︸ ︷︷ ︸

<0

< 0.
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Proof of Lemma 5. Let F be the distribution of the highest opponent bid. I

derive Fm
t,b, the payment distribution for a plan b at price t < b. Losing and paying

nothing has a probability of 1−F (b)
1−F (t)

, winning at some price x ∈ [t, b] has marginal

probability f(x)
1−F (t)

. Hence, the payment distribution for payments x ∈ R+ is

Fm
t,b(x) =


1−F (b)
1−F (t)

x < t

1−F (b)+F (x)−F (t)
1−F (t)

x ∈ [t, b]

1 x > b.

Note that for notational convenience payments in Fm
t,b are defined on positive

support. Since a payment induces a loss, a deviation from b∗ to b > b∗ yields

instantaneous reference-dependent utility of

EN(Fmt,b|Fmt,b∗) =

∫ b∗

0
µm

(
1− F (b)− (1− F (b∗))

1− F (t)

)
dx+

∫ b

b∗
µm

(
1− F (b) + F (x)− F (t)

1− F (t)
− 1

)
dx

=
λmηm

1− F (t)

(∫ b∗

0
(F (b∗)− F (b)) dx+

∫ b

b∗
(F (x)− F (b)) dx

)

= −λmηm
∫ b

b∗

xf(x)

1− F (t)
dx,

where the last step is by integration by parts. Analogously, a deviation from

b∗ > t to b ∈ [t, b∗) yields

EN(Fm
t,b|Fm

t,b∗) = ηm

∫ b∗

b

xf(x)

1− F (t)
dx,

and hence for both cases in one formula

EN(Fm
t,b|Fm

t,b∗) =
µm

(∫ b
b∗
−xdF (x)

)
1− F (t)

.

Next, I calculate expected news disutility from money. Consider the expected

news utility from an information update from an ε-increment from price t− ε to

price t. Call ∆t the probability that the auction ends in that increment, such

that the bidder has to pay t − ε (i.e. payoff distribution 1x≥t−ε). By Lemma 1

the expected news utility from that update is
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EN(Fm
t,b|Fm

t−ε,b)

=−∆tΛm

∫ b

0

∣∣1[t−ε,b] − Fm
t−ε,b(x)

∣∣dx
=−∆tΛm

(∫ t−ε

0

1− F (b)

1− F (t)
dx+

∫ b

t−ε

∣∣∣∣1− 1− F (b) + F (x)− F (t)

1− F (t)

∣∣∣∣ dx)
=−∆tΛm

(
(t− ε)1− F (b)

1− F (t)
+

∫ b

t−ε

F (b)− F (x)

1− F (t)
dx

)
.

For aggregated news utility from time t note that at t the probability that an

increment at s > t is reached before the auction is over is 1−F (s)
1−F (t)

. For increment

size to zero, this event has marginal probability limε→0
∆s

ε
1−F (s)
1−F (t)

= f(s)
1−F (t)

, hence

expected news utility from t onward is

Lmt (b, θ|b) = −
∫ b

t

f(s)

1− F (t)
Λm

(
s

1− F (b)

1− F (s)
+

∫ b

s

F (b)− F (x)

1− F (s)
dx

)
ds.

Plugging this together with classical utility and the reference-dependent deviation

utility in the good dimension as calculated in Proposition 2 yields the result.

Proof of Lemma 6. As a necessary condition for b to be an ex-ante PE given type
θ and belief F the right-derivative at b′ = b must satisfy
∂+U0(b′,θ|b)

∂b′
≤ 0, hence

(θ−b)f(b)+ηgf(b)θ−λmηmbf(b)−Λg

(
1+ln(1−F (b))

)
f(b)θ−Λm

(
f(b)b+

∫ b

0

f(s)

1− F (s)
(b− 2s)f(b)ds

)
≤ 0.

In any continuous symmetric increasing equilibrium, it must be that b = b(θ),

F (b(θ)) = Gn−1(θ), and f(b(θ))b′(θ) = (Gn−1)′(θ), and moreover f(b(θ)) > 0 for

all θ. Since after dividing by f(b) the necessary condition is violated for b = 0 it

follows by continuity that for the minimal b where it is satisfied (if any) it holds

with equality. Rearranging yields for this b

(
1+ηg−Λg

(
1+ln(1−F (b(θ)))

))
θ−(1+λmηm+Λm)b(θ)−Λm

∫ b(θ)

0

f(s)

1− F (s)
(b(θ)−2s)ds = 0.

The fact that for θ = θmin the probability F (b(θ)) as well as the integral in this

condition equal zero immediately implies
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b(θmin) =
1 + ηg − Λg

1 + λmηm + Λm

θmin. (17)

To obtain the lower bound for all other θ, I differentiate the binding necessary

condition with respect to θ, and obtain the differential equation

1 + ηg−Λg

(
1 + ln(1−Gn−1(θ))

)
+ Λg

(Gn−1)′(θ)

1−Gn−1(θ)
θ − (1 + λmηm + Λm)b′(θ)...

...+ Λm
(Gn−1)′(θ)

1−Gn−1(θ)
b(θ) + Λm ln(1−Gn−1(θ))b′(θ) = 0,

or equivalently

b′(θ)+
−Λm

(Gn−1)′(θ)
1−Gn−1(θ)

1 + λmηm + Λm − Λm ln(1−Gn−1(θ))
b(θ) =

1 + ηg − Λg − Λg ln(1−Gn−1(θ)) + Λg
(Gn−1)′(θ)θ
1−Gn−1(θ)

1 + λmηm + Λm − Λm ln(1−Gn−1(θ))
.

(18)

Together with the initial value for θmin from (17) this first-order linear differential

equation solves to

b(θ) =
(

1+λmηm+Λm−Λm ln(1−Gn−1(θ))
)∫ θ

0

1 + ηg − Λg − Λg ln(1−Gn−1(s)) + Λg
(Gn−1)′(s)
1−Gn−1(s)

(1 + λmηm + Λm − Λm ln(1−Gn−1(s)))2

 ds.

For sufficiency I show that a θ-type bidder does not profit from a (global)

deviation to b = b(θ̃) for any θ̃ 6= θ. It is easy to check that for two upward

deviations with different b∗ (and similarly for downward deviations) ∂U0(b,θ|b∗)
∂b

does not depend on b∗. Hence, for any θ̃ > θ and b = b(θ̃)

∂U0(b, θ|b(θ))
∂b

=
∂+U0(b, θ|b(θ̃))

∂b
<
∂+U0(b, θ̃|b(θ̃))

∂b
= 0,

where the inequality follows from

∂
(
∂+U0(b, θ|b∗)

)
∂b∂θ

= f(b)
(
1 + ηg −Λg −Λg ln(1−F (b))

)
≥ f(b)(1 + ηg −Λg) > 0.

Similarly, for downward deviations to b = b(θ̃) with θ̃ < θ

∂U0(b, θ|b(θ))
∂b

=
∂−U0(b, θ|b(θ̃))

∂b
>
∂−U0(b, θ̃|b(θ̃))

∂b
> 0,

where the first inequality follows from
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∂
(
∂+U0(b, θ|b(θ))

)
∂b∂θ

= f(b)
(
1+λgηg−Λg−Λg ln(1−F (b))

)
≥ f(b)(1+λgηg−Λg) > 0.

For the time consistency constraint, I look at the constraint that—given a

plan b—a bidder does not want to deviate and drop out at t, the increment

before b. Call again ∆t = F (t+ε)−F (t)
1−F (t)

the winning probability of bidding for

another increment until t ≥ b. With the belief of ∆t of winning and paying t− ε,
dropping out at t rather than t+ ε is not profitable if and only if

−∆tλgηgθ + ∆tηm(t− ε) ≤ ∆t(θ − (t− ε))−∆(1−∆)(Λgθ + Λm(t− ε),

where the right-hand side is due to Lemma 1. For increment size ε going to zero

and a continuous F one has ∆t → 0 and t− ε→ b, and obtains

−∆tλgηgθ + ∆tηmb ≤ ∆t(θ − b)−∆t(Λgθ + Λmg),

which, after dividing by ∆t, can be rearranged to b ≤ 1+ηg
1+λmηm

θ.

Proof of Proposition 5. Claim: If for continuous belief F and b∗ ≤ 1+ηg
1+λmηm

θ a

bidder profits at some t < b∗ from a downward deviation to b ∈ [t, b∗), then she

does so for t = 0.

Proof of claim: Define for given b and b∗

δ(t) = δ(t, b, b∗) = (1− F (t))(Ut(b, θ, F |b∗)− Ut(b∗, θ, F |b∗)).

Clearly, a deviation from b∗ to b < b∗ is profitable at t if and only if for these b∗

and b the condition δ(t) > 0 holds. Further,

δ(b) =

∫ b∗

b
(−(1 + λgηg)θ + (1 + ηm)x) dF (x)− (1− F (b))(Lgb(b

∗, θ, F |b∗) + Lmb (b∗, θ, F |b∗))

< (F (b∗)− F (b))
(
− (1 + λgηg − Λg)θ + (1 + ηm)b∗

)
+ Λm

∫ b∗

b

f(s)

1− F (s)

(
(1− F (b∗))b∗ +

∫ b∗

0
(F (b∗)− F (s))dx︸ ︷︷ ︸
<b∗(F (b∗)−F (s))

)
ds

< (F (b∗)− F (b))
(
− (1 + λgηg − Λg)θ + (1 + ηm + Λm)b∗

)
= (F (b∗)− F (b))

(
− (1 + ηg)θ + (1 + λmηm)b∗

)
< 0.
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Moreover,

δ′(t) =
f(t)

1− F (t)

((
− F (b) + F (b∗)

)
(Λgθ + Λmt) + Λm

∫ b

t
(F (b)− F (x))dx− Λm

∫ b∗

t

(
F (b∗)− F (x)

)
dx

)
.

Since the term in the big brackets is decreasing in t it follows that δ′(t) < 0

for some t > 0 only if δ′(s) < 0 for all s ∈ [0, t]. Now, suppose there is some

t < b < b∗ for which δ(t) > 0. Then δ(t) > δ(b), hence there is some s ∈ [t, b]

with δ′(s) < 0. Then δ′(t) < 0 for all t < b, and hence also δ(0) > 0, which proves

the claim.

I show the bounds for the symmetric PEs. Clearly, by Lemma 6 any symmetric

PE satisfies b(θ) ≤ 1+ηg
1+λmηm

θ. It remains to show that any b < b(θ) cannot be

part of a symmetric PE. By Lemma 6 an upward deviation to b(θ) at time t = 0

would be profitable for such a bid. Hence, b < b(θ) can only be a PE if it is

time consistent, but b(θ) is not. I bring this case to a contradiction. If b(θ) were

time inconsistent with respect to downward deviations then by the above claim

it would by suboptimal at t = 0, contradicting Lemma 6. Hence, suppose that

at some t for some b̃ > b(θ) one has δ(t, b̃, b(θ)) > 0, but δ(t, b̃, b) ≤ 0. This is a

contradiction since for all b < 1+ηg
1+λmηm

θ one has

∂δ(t, b̃, b)

∂b
= f(b)

(
− (1 + ηg)θ + (1 + λmηm)b

)
< 0.

Hence, any symmetric PE must satisfy b(θ) ≥ b(θ).

It remains to show that b(θ) is a symmetric PE if ηg ≥ ηm and λg ≥ λm.

By Lemma 6 no bidder can profit from a time-consistent deviation at t = 0. By

Claim 1 downward deviations are then not profitable at any time. For upward

deviations at t = 0, again by Lemma 6, ∂δ(t,b,b(θ))
∂b

< 0 for any b > b(θ). To obtain

this result for all t, note that

∂2δ(t, b, b(θ))

∂t∂b
=
f(b)f(t)

1− F (t)

(
Λm(−2t+b)−Λgθ

)
<
f(b)f(t)

1− F (t)

(
Λm

1 + ηg
1 + λmηm

θ − Λgθ

)
< 0,

since, by assumption, Λg > Λm.

Proof of Proposition 6. For completeness, I prove the proposition for the case of

loss aversion in both commodity dimension, the result then follows as special case

with ηg = η and λm = 0.

Recall that by definition the set of PEs is determined by thinking all discrete
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increments backwards. For any history hk at any sufficiently high price (e.g.

for prices s > (1 + λgηg)θ) where remaining would win with positive probability

in the next increment, the unique PE action is to drop out.25 Hence, for any

continuation game with prices above (1 + λgηg)θ there exists a finite set of time

consistent plans, and in each the bidder loses with probability one.

Thinking iteratively backwards from there, suppose a bidder at some decision

node has determined a non-empty set of time-consistent continuation plans for

any future contingency following her sequential action. A plan b at that node

consists of an action (remain/drop) and a time-consistent continuation plan. I

must show that there is a plan b for which Ut(b, θ|b) ≥ Ut(b
′, θ|b) with respect to

any other plan b′.

Call —with some abuse of notation—Pb the winning probability and Tb the

expected payment as induced by plan b. Then the instantaneous update from

deviating from b to b′ induces instantaneous utility bounded from above by

ηg(Pb′ − Pb)θ − ηm(Tb′ − Tb). Hence, for any plan

argmaxb{Ut(b, θ|b) + ηPbθ − ηmTb} one obtains

Ut(b, θ|b) ≥ Ut(b′, θ|b′) + ηg(Pb′ − Pb)θ − ηm(Tb′ − Tb) ≥ Ut(b′, θ|b),

which shows existence of a PE.

A PPE exists as a utility maximizing element in the finite set of PEs.

I now show that equilibrium bids are bounded by 1+ηg
1+λmηm

θ. Consider a con-

tinuous belief and suppose for the sake of contradiction that there is some history

hk = (t1, ..., tk) for which b(hk, θ) >
1+ηg

1+ηmλm
θ is part of a PE. By the definition of

continuous beliefs for any ∆ > 0 there is some price s ∈ [tk, b(hk, θ)] such that

the bidder’s probability to win at s with history hk is below ∆. Using Lemma 1

and that by Proposition 1 in Kőszegi and Rabin (2009) a bidder weakly increases

her utility when she obtains all information revelation at once, I obtain

Us(b(hk), θ|b(hk))− Us(s, θ|b(hk))

≤∆
(
θ − (1−∆)Λgθ − s− (1−∆)Λms

)
−∆

(
− λgηgθ + ηms

)
=∆
(

(1 + ηg + ∆Λg)θ − (1 + λmηm −∆Λm)s
)
.

With sufficiently small increments and s→ b(hk) it follows that ∆→ 0, and

25If the probability to win in that increment is zero the decision whether to drop out is
inconsequential, and both actions are consistent with equilibrium behavior. Yet, the bidder
will drop out before she would otherwise win with positive probability.
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hence the term in brackets on the right hand side approaches

(1 + ηg)θ − (1 + λmηm)b(hk) < 0, a contradiction.

Proof of Proposition 7. By integration by parts∫ θ

t

2g(s)

1−G(s)

∫ θ

s
2g(x)

(
G(θ̂(x))−G(x)

)
dxds = −

∫ θ

t
2g(s) ln

(
(1−G(s))2

(1−G(t))2

)(
G(θ̂(s))−G(s)

)
ds.

Hence, I obtain

L2(t, θ̂(s)) = −Λθ

∫ θ

t

2g(s)

(1−G(t))2

(
1 + ln

(
(1−G(s))2

(1−G(t))2

))
(G(θ̂(s))−G(s))ds

+ Λθ

∫ θ

t

2g(s)(1−G(s))

(1−G(t))2

(
1−G(θ̂(s))

1−G(s)

)
ln

(
1−G(θ̂(s))

1−G(s)

)
ds,

where the first line is expected loss from the three-bidder part of the auction, and

the second line is expected loss from the subsequent two-bidder auction.
Consider first downward deviations in the sense that θ̂(s) induces a smaller

winning probability than the truthful strategy. Let Ut(θ̂(s)|θ) be the expected
utility of type θ at price b(t) in the auction with three active bidders when
deviating to strategy

(
b(θ), b(s, θ̂(s))

)
. Incorporating the instantaneous update

and the change in classical utility, the change in utility from the deviation reads

∆t(θ̂(s)|θ) := Ut(θ̂(s)|θ)− Ut(θ|θ)

=

∫ θ

t

2g(s)

(1−G(t))2

((
1 + ln

(
(1−G(s))2

(1−G(t))2

))(
− Λθ

)(
G(θ̂(s))−G(s)

)
+

∫ θ̂(s)

θ

(
(1 + λη)θ − b(s, x)

)
g(x)dx

)
ds

+

∫ θ

t

2g(s)(1−G(s))

(1−G(t))2

[
Λθ

(
1−G(θ̂(s))

1−G(s)

)
ln

(
1−G(θ̂(s))

1−G(s)

)
− L1(s, θ)

]
ds. (19)

Notice that the choice of θ̂(s) enters the integrand pointwise for every s, hence
optimization with respect to the optimal θ̂(s) can be done pointwise. Since for ev-

ery s the integrand of (1−G(t))2∆t(θ̂(s)) satisfies ∂2

∂θ̂(s)∂t
(...) = −4θΛg(t)g(s)g(θ̂(s))

1−G(t)
<

0, a downward deviation of θ̂(s) for some s is profitable at any price if and only
if it is so at price b(s).26 Next, notice that it is sufficient to consider local devia-
tions in θ̂(s). Indeed, the first summand of the integrand in the first line of (19)
is linear in G(θ̂(s)) whereas the other summands describe the deviation utility
for the two-bidder auction following the first dropout, for which I have verified
sufficiency of local deviations in the main model. It follows that a bidding strat-
egy is optimal with respect to downward deviations in θ̂(s) for any s ∈ [θ, θ] if

26This is precisely the insurance effect: A lower belief magnifies the update at a first dropout,
and hence induces more expected during the auction, hence stronger incentives for higher bids
early in the auction.
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and only if at θ̂(s) = θ the necessary condition for the integrand at t = s

0 ≤ 2g(s)

(1−G(s))2

[
(−Λθ)

(
1 + ln

(
(1−G(s))2

(1−G(s))2

))
+ (1 + λη)θ − b

(
s, θ̂(s)

)
+ Λθ

(
−1− ln

(
1−G(θ̂(s))

1−G(s)

))]
g(θ̂(s))

is satisfied. This condition simplifies to

b(s, θ) ≤
(

1 + η − Λ

(
1 + ln

(
1−G(θ)

1−G(s)

)))
θ. (20)

Together with the constraints on equilibrium behavior for the two-bidder auction

following a drop-out at b(s) as outlined in Proposition 3,

b(s, θ) = min

{
(1 + η)θ,

(
1 + η − Λ

(
1 + ln

(
1−G(θ)

1−G(s)

)))
θ

}
(21)

remains as the only equilibrium candidate that is optimal with respect to

downwards deviations during the three-bidder auction and time consistent with

respect to the two-bidder auction, following a first dropout.

For sufficiency notice that upward deviations θ̂(s) from the equilibrium can-

didate in (21) are no concern since any such deviation, by (20), would be time

inconsistent.

It remains to show that a bidder cannot profit from a deviation to an earlier or

later dropout in the three-bidder part of the auction. Since (1−x) ln(1−x) > −x
for 0 < x < 1 it follows that L1(s, θ) > −ΛθG(θ)−G(s)

1−G(s)
. From (13) it then follows

that

L2(t, θ) >

∫ θ

t

2g(s)(1−G(s))

(1−G(t))2

[
−Λθ

G(θ)−G(s)

1−G(s)
− Λθ

G(θ)−G(s)

1−G(s)

]
ds = −2Λθ

(
1−G(θ)

1−G(t)

)2

,

where
(

1−G(θ)
1−G(t)

)2

is the winning probability at time b(t). Since the price in case

of winning is bounded below (1 + η − Λ)θ, utility on equilibrium path satisfies

Ut(θ|θ) >
(

1−G(θ)

1−G(t)

)2 (
θ − 2Λθ − (1 + η − Λ)θ

)
= −ληθ

(
1−G(θ)

1−G(t)

)2

,

where the right-hand side is the utility of an earlier dropout.

An upward deviation is inconsequential as it does not change the winning

probability. Indeed, if the first dropout is at a price above b(θ) then the remain-

ing opponent is necessarily of higher type and wins the auction, since (20) is

increasing in θ.
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Proof of Proposition 8. Suppose, by way of contradiction, there is a symmetric,

weakly monotone equilibrium b(·, θ) for some n ≥ 4.

I first show that for any history hk the equilibrium function b(hk, θ) must be

strictly increasing a neighborhood of θmax.

Suppose otherwise that for some history the function b(hk, θ) is constant on

some interval [θ̂, θmax]. Let P be the probability that (for a given tie breaking

rule) a bidder is assigned the good in case of the simultaneous dropout of the

remaining n − k bidders at price b(hk, θ
max). The fact that a bidder of type

θ ∈ [θhk , θ
max] does not benefit from dropping out earlier implies

−ληPθ ≤ P
((

1 + η(1− P )
)
θ − b(hk, θmax)

)
− λη(1− P )Pθ

⇔ b(hk, θ
max) ≤

(
1 + Pλη + (1− P )η

)
θ.

The fact that she does not prefer to proceed and win with certainty implies

P
(
(1 + η(1− P ))θ− b(hk, θmax)

)
− λη(1− P )Pθ ≥

(
1 + (1− P )η

)
θ− b(hk, θmax)

⇔ b(hk, θ
max) ≥

(
1 + Pλη + (1− P )η

)
θ.

Hence, b(hk, θ
max) =

(
1+Pλη+(1−P )η

)
θ for different values of θ, a contradiction.

Since b(hk, θ) is strictly increasing around θmax for every of the finite possible

histories there exists an interval [θ̂, θmax] on which b(hk, θ) is increasing for each

history. Suppose the smallest of all n type realization satisfies θ > θ̂. Then, since

for any price above b(θ0) with θ0 > θ̂ the bidding function is strictly increasing,

expected loss from news utility at price b(θ0) is given by Ln−1(θ0, θ) in (13). Next,

I show by induction that limθ0→θ
Ln(θ0,θ)

−nΛθ
(
G(θ)−G(θ0)
1−G(θ0)

)n = 1. For n = 1 by L’Hospital’s

rule

lim
θ0→θ

L1(θ0, θ)

−ΛθG(θ)−G(θ0)
1−G(θ0)

= lim
θ0→θ

ln
(

1−G(θ)
1−G(θ0)

)
1−G(θ)
1−G(θ0)

G(θ0)−G(θ)
1−G(θ0)

= lim
θ0→θ

g(θ0)(1−G(θ))
(1−G(θ0))2

(
1 + ln

(
1−G(θ)
1−G(θ0)

))
g(θ0)(1−G(θ))

(1−G(θ0))2

= 1.
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Suppose the claim holds for n− 1. Then, by (13),

lim
θ0→θ

Ln(θ0, θ)

−nΛθ
(
G(θ)−G(θ0)

1−G(θ0)

)n

= lim
θ0→θ

∫ θ
θ0
gn(s|θ0)

[
−Λθ

((
G(θ)−G(s)

1−G(s)

)n−1
−
(
G(θ)−G(s)

1−G(s)

)n)
+ Ln−1(s)

]
ds

−nΛθ
(
G(θ)−G(θ0)

1−G(θ0)

)n

= lim
θ0→θ

∫ θ
θ0

ng(s)(1−G(s))n−1

(1−G(θ))n

[
−Λ

(
G(θ)−G(s)

1−G(s)

)n−1
− (n− 1)Λ

(
G(θ)−G(s)

1−G(s)

)n−1
]
ds

−nΛ
(
G(θ)−G(θ0)

1−G(θ0)

)n
= lim
θ0→θ

−
∫ θ
θ0

ng(s)nΛ
(
G(θ)−G(s)

)n−1

(1−G(θ))n ds

−nΛ
(
G(θ)−G(θ0)

1−G(θ0)

)n = 1.

Since for θ > θ0 I have the case of strictly increasing bidding functions, time-

consistency and Proposition 7 imply that the winning price approaches (1− η +

Λ)θ0 for θ0 → θ. Hence, for Pθ0 :=
(
G(θ)−G(θ0)

1−G(θ0)

)n−1

, i.e. the winning probability at

a clock price of b(θ0) with n− 1 opponents, expected utility from the equilibrium

plan as θ0 approaches θ goes to

Pθ0
(
θ − (1− η + Λ)θ

)
− (n− 1)ΛθPθ0 = Pθ0

(
− λη − (n− 3)Λ

)
θ < −ληPθ0θ.

As the expression on the right-hand side is the utility of an immediate dropout

at b(θ0), this is a contradiction.
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Rabin, M. and Weizsäcker, G. (2009). Narrow bracketing and dominated choices.

American Economic Review, 99(4):1508–43.

Rosato, A. (2016). Selling substitute goods to loss-averse consumers: lim-

ited availability, bargains, and rip-offs. The RAND Journal of Economics,

47(3):709–733.

Rosato, A. (2020). Loss aversion in sequential auctions: Endogenous interdepen-

dence, informational externalities and the ”afternoon effect”.

Rosato, A. and Tymula, A. A. (2019). Loss aversion and competition in vickrey

auctions: Money ain’t no good. Games and Economic Behavior, 115:188–208.

64



Schindler, J. (2003). Auctions with interdependent valuations. Theoretical and

empirical analysis, in particular of internet auctions. PhD thesis, WU Vienna

University of Economics and Business.

Simon, L. K. and Stinchcombe, M. B. (1989). Extensive form games in continuous

time: Pure strategies. Econometrica, 57(5):1171–1214.

Smith, A. (2019). Lagged beliefs and reference-dependent utility. Journal of

Economic Behavior & Organization, 167:331–340.

Strahilevitz, M. A. and Loewenstein, G. (1998). The effect of ownership history

on the valuation of objects. Journal of Consumer Research, 25(3):276–289.

Thaler, R. (1985). Mental accounting and consumer choice. Marketing science,

4(3):199–214.

Thaler, R. H. (1999). Mental accounting matters. Journal of Behavioral decision

making, 12(3):183–206.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed ten-

ders. The Journal of finance, 16(1):8–37.

65




